Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A constrastive semi-supervised deep learning framework for land cover classification of satellite time series with limited labels

Published: 04 March 2024 Publication History

Abstract

In this work, we present a new semi-supervised learning framework to cope with satellite image time series (SITS) classification in a data paucity scenario, considering extreme low levels of supervision. The proposed methodology, referred as S 3 ITS (Semi-Supervised Satellite Image Time Series classification method), is based on temporal convolutional neural networks and it takes advantage of both labelled and unlabelled information. S 3 ITS enforces the data to be projected in a discriminative manifold via contrastive learning, in order to produce a data representation where samples belonging to the same category are closer than the ones belonging to different ones. Pseudo-labelling is employed on unlabelled samples to take the most out of the available unlabelled information. Experiments on two study sites described by SITS of Sentinel-2 images highlight the quality of the proposed method with respect to common SITS-based classification methods and recent machine learning approaches especially tailored for the semi-supervised classification of multi-variate time series data.

References

[1]
Kolecka N., Ginzler C., Pazur R., Price B., Verburg P.H., Regional scale mapping of grassland mowing frequency with sentinel-2 time series, Remote Sens. 10 (8) (2018) 1221.
[2]
Pelletier C., Webb G.I., Petitjean F., Temporal convolutional neural network for the classification of satellite image time series, Remote. Sens. 11 (5) (2019) 523.
[3]
Wulder M.A., Masek J.G., Cohen W.B., Loveland T.R., Woodcock C.E., Opening the archive: How free data has enabled the science and monitoring promise of landsat author links open overlay panel, Remote Sens. Environ. 122 (2012) 2–10.
[4]
Guttler F., Ienco D., Nin J., Teisseire M., Poncelet P., A graph-based approach to detect spatiotemporal dynamics in satellite image time series, ISPRS J. Photogramm. Remote Sens. 130 (2017) 92–107.
[5]
Abade N.A., Júnior O.A.d.C., Guimarães R.F., de Oliveira S.N., Comparative analysis of MODIS time-series classification using support vector machines and methods based upon distance and similarity measures in the Brazilian Cerrado-Caatinga boundary, Remote Sens. 7 (9) (2015) 12160–12191.
[6]
Castillo-Navarro J., Saux B.L., Boulch A., Audebert N., Lefèvre S., Semi-supervised semantic segmentation in earth observation, Mach. Learn. (2021).
[7]
Ding Y., Zhao X., Zhang Z., Cai W., Yang N., Zhan Y., Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification, IEEE Trans. Geosci. Remote. Sens. 60 (2022) 1–12.
[8]
Bagnall A.J., Lines J., Bostrom A., Large J., Keogh E.J., The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances, Data Min. Knowl. Discov. 31 (3) (2017) 606–660.
[9]
Ruiz A.P., Flynn M., Large J., Middlehurst M., Bagnall A.J., The great multivariate time series classification bake off: A review and experimental evaluation of recent algorithmic advances, Data Min. Knowl. Discov. 35 (2) (2021) 401–449.
[10]
Fawaz H.I., Forestier G., Weber J., Idoumghar L., Muller P., Deep learning for time series classification: A review, Data Min. Knowl. Discov. 33 (4) (2019) 917–963.
[11]
Triguero I., García S., Herrera F., Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study, Knowl. Inf. Syst. 42 (2) (2015) 245–284.
[12]
Fan H., Zhang F., Wang R., Huang X., Li Z., Semi-supervised time series classification by temporal relation prediction, in: ICASSP, IEEE, 2021, pp. 3545–3549.
[13]
Marussy K., Búza K., SUCCESS: A new approach for semi-supervised classification of time-series, in: Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J.M. (Eds.), Artificial Intelligence and Soft Computing - 12th International Conference, in: Lecture Notes in Computer Science, vol.7894, ICAISC 2013, Zakopane, Poland, June 9-13, 2013, Proceedings, Part I, Springer, 2013, pp. 437–447.
[14]
Frank J., Mannor S., Pineau J., Precup D., Time series analysis using geometric template matching, IEEE Trans. Pattern Anal. Mach. Intell. 35 (3) (2013) 740–754.
[15]
Castellanos M.G., Bergmeir C., Triguero I., Rodríguez Y., Benítez J.M., Self-labeling techniques for semi-supervised time series classification: An empirical study, Knowl. Inf. Syst. 55 (2) (2018) 493–528.
[16]
Jawed S., Grabocka J., Schmidt-Thieme L., Self-supervised learning for semi-supervised time series classification, in: PAKDD. Vol. 12084, 2020, pp. 499–511.
[17]
Zhang X., Gao Y., Lin J., Lu C., TapNet: Multivariate time series classification with attentional prototypical network, in: AAAI, 2020, pp. 6845–6852.
[18]
Ienco D., dos Santos D.P., de Carvalho A.C.P.L.F., Evaluate pseudo labeling and CNN for multi-variate time series classification in low-data regimes, in: ICANN. Vol. 12895, 2021, pp. 126–137.
[19]
Hu T., Huang X., Li J., Benediktsson J.A., Yang J., Gong J., A semi-supervised approach towards land cover mapping with sentinel-2 desnse time-series imagery, in: IGARSS, IEEE, 2019, pp. 2423–2426.
[20]
Zhou Z., Li M., Tri-training: Exploiting unlabeled data using three classifiers, IEEE Trans. Knowl. Data Eng. 17 (11) (2005) 1529–1541.
[21]
Sitokonstantinou V., Koukos A., Kontoes C., Bartsotas N.S., Karathanassi V., Semi-supervised phenology estimation in cotton parcels with sentinel-2 time-series, in: IGARSS, IEEE, 2021, pp. 8491–8494.
[22]
Interdonato R., Ienco D., Gaetano R., Ose K., DuPLO: A DUal view point deep learning architecture for time series classification, ISPRS J. Photogramm. Remote Sens. 149 (2019) 91–104.
[23]
Rußwurm M., Körner M., Self-attention for raw optical satellite time series classification, ISPRS J. Photogramm. Remote Sens. 169 (2020) 421–435.
[24]
Garnot V.S.F., Landrieu L., Giordano S., Chehata N., Satellite image time series classification with pixel-set encoders and temporal self-attention, in: CVPR, Computer Vision Foundation / IEEE, 2020, pp. 12322–12331.
[25]
Chopra S., Hadsell R., LeCun Y., Learning a similarity metric discriminatively, with application to face verification, in: CVPR, 2005, pp. 539–546.
[26]
Cascante-Bonilla P., Tan F., Qi Y., Ordonez V., Curriculum labeling: Revisiting pseudo-labeling for semi-supervised learning, in: AAAI, AAAI Press, 2021, pp. 6912–6920.
[27]
Hagolle O., Huc M., Villa Pascual D., Dedieu G., A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, vENμs and sentinel-2 images, Rem. Sens. 7 (3) (2015) 2668–2691.
[28]
Inglada J., Vincent A., Arias M., Tardy B., iota2-a25386, Zenodo, 2016.
[29]
Dupuy S., Gaetano R., Mézo L.L., Mapping land cover on reunion island in 2017 using satellite imagery and geospatial ground data, Data Brief 28 (2020).
[30]
Jolivot A., Lebourgeois V., Leroux L., et al., Harmonized in situ datasets for agricultural land use mapping and monitoring in tropical countries, Earth Syst. Sci. Data 13 (12) (2021) 5951–5967.
[31]
Wang Z., Yan W., Oates T., Time series classification from scratch with deep neural networks: A strong baseline, in: IJCNN, IEEE, 2017, pp. 1578–1585.
[32]
Yue Z., Wang Y., Duan J., Yang T., Huang C., Tong Y., Xu B., TS2Vec: Towards universal representation of time series, in: AAAI, AAAI Press, 2022, pp. 8980–8987.
[33]
Ismail-Fawaz A., Devanne M., Weber J., Forestier G., Enhancing time series classification with self-supervised learning, in: 15th International Conference on Agents and Artificial Intelligence: ICAART 2023, INSTICC, SciTePress, 2023, pp. 1–8.
[34]
Tan P.-N., Steinbach M., Kumar V., Introduction to Data Mining, First Ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.
[35]
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[36]
Kingma D.P., Ba J., Adam: A method for stochastic optimization, 2014, CoRR abs/1412.6980.
[37]
van der Maaten L., Hinton G., Visualizing Data Using t-SNE, J. Mach. Learn. Res. 9 (2008) 2579–2605.

Index Terms

  1. A constrastive semi-supervised deep learning framework for land cover classification of satellite time series with limited labels
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Neurocomputing
          Neurocomputing  Volume 567, Issue C
          Jan 2024
          157 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 04 March 2024

          Author Tags

          1. Satellite image time series
          2. Land cover mapping
          3. Semi-supervised learning

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 18 Aug 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media