Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Hyperspectral anomaly detection based on weighted low-rank sparse dictionary learning

Published: 28 December 2024 Publication History

Abstract

The geometric model-based hyperspectral anomaly detection techniques have garnered a lot of interest recently. These methods are predicated on the assumption that the background can be represented by a dictionary of spectral vectors, but the anomaly cannot. Building an objective model with high representational capabilities and obtaining precise background modeling are therefore key aspects of this type of method. The background dictionary is also readily tainted by anomalies due to the limitations of the current approaches, making the detection findings less reliable. To address the above problems, this paper proposes a weighted low-rank sparse dictionary learning method (WLSDL). This model organically combines sparse representation with low-rank representation in order to effectively depict the intricate background distribution. The weights relating to the eigenvalues of the image are designed by mining the physical characteristics of the HSI. This can enhance the nuclear norm’s capacity for representation, resulting in a background dictionary with more representativeness. Furthermore, the capped norm constraint is incorporated in the objective function to decrease the effect of anomalies and noises on background modeling, hence minimizing anomaly pollution on the background dictionary. The residual image effectively increases the accuracy of anomaly identification since it makes it easier to distinguish between anomalies and background. We use three hyperspectral datasets to evaluate the proposed method. The experimental findings demonstrate the effectiveness and superiority of the proposed method over state-of-the-art methods.

References

[1]
Lei J., Li M., Xie W., Li Y., Jia X., Spectral mapping with adversarial learning for unsupervised hyperspectral change detection, Neurocomputing 465 (2021) 71–83.
[2]
Moharram M.A., Sundaram D.M., Land use and land cover classification with hyperspectral data: A comprehensive review of methods, challenges and future directions, Neurocomputing 536 (2023) 90–113.
[3]
Yang L., Chen J., Zhang R., Yang S., Zhang X., Jiao L., Precise crop classification of UAV hyperspectral imagery using kernel tensor slice sparse coding based classifier, Neurocomputing 551 (2023).
[4]
Yu W., Zhang M., Huang H., Accelerated adaptive feature balance technique based on TEMD for hyperspectral classification, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1–5.
[5]
Yuan Y., Jin M., Multi-type spectral spatial feature for hyperspectral image classification, Neurocomputing 492 (2022) 637–650.
[6]
Yu W., Huang H., Shen Y., Shen G., Crossmodal sequential interaction network for hyperspectral and LiDAR data joint classification, IEEE Geosci. Remote Sens. Lett. 21 (2024) 1–5.
[7]
Yuan Y., Dong L., Li X., Hyperspectral unmixing using nonlocal similarity-regularized low-rank tensor factorization, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–14.
[8]
Dong L., Lu X., Liu G., Yuan Y., A novel NMF guided for hyperspectral unmixing from incomplete and noisy data, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–15.
[9]
Yu W., Huang H., Shen G., Multilevel dual-direction modifying variational autoencoders for hyperspectral feature extraction, IEEE Geosci. Remote Sens. Lett. 19 (2022) 1–5.
[10]
Yu W., Gao L., Huang H., Shen Y., Shen G., HI2D2FNet: Hyperspectral intrinsic image decomposition guided data fusion network for hyperspectral and LiDAR classification, IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–15.
[11]
Yu W., Huang H., Zhang M., Shen Y., Shen G., Shadow mask-driven multimodal intrinsic image decomposition for hyperspectral and LiDAR data fusion, IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–15.
[12]
Yu W., Huang H., Shen G., Deep spectral–spatial feature fusion-based multiscale adaptable attention network for hyperspectral feature extraction, IEEE Trans. Instrum. Meas. 72 (2023) 1–13.
[13]
Gu Y., Zhang L., Rare signal component extraction based on kernel methods for anomaly detection in hyperspectral imagery, Neurocomputing 108 (2013) 103–110.
[14]
Wu C., Zhang L., Du B., Hyperspectral anomaly change detection with slow feature analysis, Neurocomputing 151 (2015) 175–187.
[15]
Xie W., Zhang X., Li Y., Lei J., Li J., Du Q., Weakly supervised low-rank representation for hyperspectral anomaly detection, IEEE Trans. Cybern. 51 (8) (2021) 3889–3900.
[16]
Nasrabadi N.M., Hyperspectral target detection : An overview of current and future challenges, IEEE Signal Process. Mag. 31 (1) (2014) 34–44.
[17]
Jiao C., Yang B., Wang Q., Wang G., Wu J., Discriminative multiple-instance hyperspectral subpixel target characterization, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–20.
[18]
Yang B., He Y., Jiao C., Pan X., Wang G., Wang L., Wu J., Multiple-instance metric learning network for hyperspectral target detection, IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–16.
[19]
Malpica J.A., Rejas J.G., Alonso M.C., A projection pursuit algorithm for anomaly detection in hyperspectral imagery, Pattern Recognit. 41 (11) (2008) 3313–3327.
[20]
Racetin I., Krtalić A., Systematic review of anomaly detection in hyperspectral remote sensing applications, Appl. Sci. 11 (2021) 4878.
[21]
Yang X., Wu Z., Li J., Plaza A., Wei Z., Anomaly detection in hyperspectral images based on low-rank and sparse representation, IEEE Trans. Geosci. Remote Sens. 54 (4) (2016) 1990–2000.
[22]
Xie W., Lei J., Fang S., Li Y., Jia X., Li M., Dual feature extraction network for hyperspectral image analysis, Pattern Recognit. 118 (2021).
[23]
Xiang P., Song J., Qin H., Tan W., Li H., Zhou H., Visual attention and background subtraction with adaptive weight for hyperspectral anomaly detection, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14 (2021) 2270–2283.
[24]
Xia X., Pan X., Li N., He X., Ma L., Zhang X., Ding N., GAN-based anomaly detection: A review, Neurocomputing 493 (2022) 497–535.
[25]
Wang S., Wang X., Zhang L., Zhong Y., Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–14.
[26]
Hu X., Xie C., Fan Z., Duan Q., Zhang D., Jiang L., Wei X., Hong D., Li G., Zeng X., Chen W., Wu D., Chanussot J., Hyperspectral anomaly detection using deep learning: A review, Remote Sens. 14 (2022) 1973.
[27]
Li Z., Wang Y., Xiao C., Ling Q., Lin Z., An W., You only train once: Learning a general anomaly enhancement network with random masks for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–18.
[28]
Yuan Y., Ma D., Wang Q., Hyperspectral anomaly detection by graph pixel selection, IEEE Trans. Cybern. 46 (12) (2016) 3123–3134.
[29]
Xu Y., Zhang L., Du B., Zhang L., Hyperspectral anomaly detection based on machine learning: An overview, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15 (2022) 3351–3364.
[30]
Su H., Wu Z., Zhang H., Du Q., Hyperspectral anomaly detection: A survey, IEEE Geosci. Remote Sens. Mag. 10 (1) (2022) 64–90.
[31]
Reed I.S., Yu X., Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Trans. Acoust. Speech Signal Process. 38 (10) (1990) 1760–1770.
[32]
Kwon H., Der S.Z., Nasrabadi N.M., Dual-window-based anomaly detection for hyperspectral imagery, in: Automatic Target Recognition XIII, Vol. 5094, 2003, pp. 148–158.
[33]
Li W., Du Q., Decision fusion for dual-window-based hyperspectral anomaly detector, J. Appl. Remote Sens. 9 (1) (2015).
[34]
Kwon H., Nasrabadi N., Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens. 43 (2) (2005) 388–397.
[35]
Liu J., Hou Z., Li W., Tao R., Orlando D., Li H., Multipixel anomaly detection with unknown patterns for hyperspectral imagery, IEEE Trans. Neural Netw. Learn. Syst. 33 (10) (2022) 5557–5567.
[36]
Chen Z., Yang B., Wang B., A preprocessing method for hyperspectral target detection based on tensor principal component analysis, Remote Sens. 10 (2018) 1033.
[37]
Li W., Du Q., Collaborative representation for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens. 53 (3) (2015) 1463–1474.
[38]
Hou Z., Li W., Tao R., Ma P., Shi W., Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection, Sci. China Inf. Sci. 65 (1) (2022) 1–12.
[39]
Ma D., Yuan Y., Wang Q., Hyperspectral anomaly detection via discriminative feature learning with multiple-dictionary sparse representation, Remote Sens. 10 (5) (2018) 745.
[40]
Huyan N., Zhang X., Zhou H., Jiao L., Hyperspectral anomaly detection via background and potential anomaly dictionaries construction, IEEE Trans. Geosci. Remote Sens. 57 (4) (2019) 2263–2276.
[41]
Zhao R., Du B., Zhang L., Hyperspectral anomaly detection via a sparsity score estimation framework, IEEE Trans. Geosci. Remote Sens. 55 (6) (2017) 3208–3222.
[42]
Yang Y., Song S., Liu D., Zhang J., Chan J.-W., Robust background feature extraction Through Homogeneous Region-based joint sparse representation for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens. (2021) 1–15.
[43]
Lin S., Zhang M., Cheng X., Zhou K., Zhao S., Wang H., Dual collaborative constraints regularized low-rank and sparse representation via robust dictionaries construction for hyperspectral anomaly detection, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 16 (2023) 2009–2024.
[44]
Xu Y., Wu Z., Li J., Plaza A., Wei Z., Anomaly detection in hyperspectral images based on low-rank and sparse representation, IEEE Trans. Geosci. Remote Sens. 54 (4) (2016) 1990–2000.
[45]
Qu Y., Wang W., Guo R., Ayhan B., Kwan C., Vance S., Qi H., Hyperspectral anomaly detection through spectral unmixing and dictionary-based low-rank decomposition, IEEE Trans. Geosci. Remote Sens. 56 (8) (2018) 4391–4405.
[46]
Cheng T., Wang B., Graph and total variation regularized low-rank representation for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens. 58 (1) (2020) 391–406.
[47]
Li L., Li W., Qu Y., Zhao C., Tao R., Du Q., Prior-based tensor approximation for anomaly detection in hyperspectral imagery, IEEE Trans. Neural Netw. Learn. Syst. 33 (3) (2022) 1037–1050.
[48]
Lu X., Dong L., Yuan Y., Subspace clustering constrained sparse NMF for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. 58 (5) (2020) 3007–3019.
[49]
Dong L., Yuan Y., Lu X., Spectral–spatial joint sparse NMF for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. 59 (3) (2021) 2391–2402.
[50]
Lee D.D., Seung H.S., Learning the parts of objects by non-negative matrix factorization, Nature 401 (1999) 788–791.
[51]
Li X., Chen M., Nie F., Wang Q., A multiview-based parameter free framework for group detection, in: Singh S.P., Markovitch S. (Eds.), Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, AAAI Press, 2017, pp. 4147–4153.
[52]
Wang S., NMF-based image quality assessment using extreme learning machine, IEEE Trans. Cybern. 47 (1) (2016) 232–243.
[53]
Chen S.-H., Chiou A.-H., Wang C.-C., A NMF-based image restoration scheme with applications to LED integrated substrate defect detection, IEEE Trans. Semicond. Manuf. 31 (4) (2018) 486–494.
[54]
Meng Y., Shang R., Shang F., Jiao L., Yang S., Stolkin R., Semi-supervised graph regularized deep NMF with Bi-Orthogonal constraints for data representation, IEEE Trans. Neural Netw. Learn. Syst. 31 (9) (2020) 3245–3258.
[55]
Zafeiriou S., Tefas A., Buciu I., Pitas I., Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification, IEEE Trans. Neural Netw. 17 (3) (2006) 683–695.
[56]
Trigeorgis G., Bousmalis K., Zafeiriou S., Schuller B.W., A deep matrix factorization method for learning attribute representations, IEEE Trans. Pattern Anal. Mach. Intell. 39 (3) (2017) 417–429.
[57]
Nie S., Liang S., Liu W., Zhang X., Tao J., Deep learning based speech separation via NMF-Style reconstructions, IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 26 (11) (2018) 2043–2055.
[58]
Leplat V., Gillis N., Ang A.M., Blind audio source separation with minimum-volume beta-divergence NMF, IEEE Trans. Signal Process. 68 (2020) 3400–3410.
[59]
Lee D.D., Seung H.S., Algorithms for non-negative matrix factorization, in: Leen T.K., Dietterich T.G., Tresp V. (Eds.), Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, MIT Press, 2000, pp. 556–562.
[60]
Li X., Zhang X., Yuan Y., Dong Y., Adaptive relationship preserving sparse NMF for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. (2021) 1–16.
[61]
He W., Zhang H., Zhang L., Shen H., Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration, IEEE Trans. Geosci. Remote Sens. 54 (1) (2016) 178–188.
[62]
Gu S., Xie Q., Meng D., Zuo W., Feng X., Zhang L., Weighted nuclear norm minimization and its applications to low level vision, Int. J. Comput. Vis. 121 (2) (2017) 183–208.
[63]
X. Li, Y. Yuan, Hyperspectral Anomaly Detection Based on Adaptive Weighted Sparse Dictionary Learning, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 4176–4179.
[64]
D. Ma, Y. Yuan, Q. Wang, A sparse dictionary learning method for hyperspectral anomaly detection with capped norm, in: 2017 IEEE International Geoscience and Remote Sensing Symposium, 2017, pp. 648–651.
[65]
Xie W., Lei J., Liu B., Li Y., Jia X., Spectral constraint adversarial autoencoders approach to feature representation in hyperspectral anomaly detection, Neural Netw. 119 (2019) 222–234.
[66]
Cai D., He X., Han J., Huang T.S., Graph regularized nonnegative matrix factorization for data representation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (8) (2011) 1548–1560.
[67]
J.M. Bioucas-Dias, M.A. Figueiredo, Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing, in: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010, pp. 1–4.
[68]
Combettes P.L., Wajs V.R., Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4 (4) (2006) 1168–1200.
[69]
Weisheng P.L., Dong V.R., Guangming J., Shi T.S., Xin X., Li L., Ma H., Feng D., Huang G., Compressive sensing via nonlocal low-rank regularization, IEEE Trans. Image Process. : Publ. IEEE Signal Process. Soc. 23 (8) (2014) 3618–3632.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 610, Issue C
Dec 2024
1073 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 28 December 2024

Author Tags

  1. Remote sensing
  2. Hyperspectral
  3. Anomaly detection
  4. Dictionary learning

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media