Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

TF4TF: : Multi-semantic modeling within the time–frequency domain for long-term time-series forecasting

Published: 18 February 2025 Publication History

Abstract

Long-term Time Series Forecasting (LTSF) plays a crucial role in real-world applications for early warning and decision-making. Time series inherently embody complex semantic information, including segment semantics, global–local semantics, and multi-view semantics, the thorough mining of which can significantly enhance the accuracy. Previous works have not been able to simultaneously address all of the semantic information mentioned above. Meanwhile, the thorough mining of semantic information introduces additional computational complexity, resulting in inefficiency issues for existing multi-semantic information mining methods. Considering the aforementioned situation, we propose a multi-semantic method within the Time–Frequency domain For long-term Time-series Forecasting (TF4TF), which can balance complex semantic information mining and efficiency. For sequences with segment semantics following patching process, mining is conducted from both time and frequency domain perspectives to extract Multi-View Semantics. Within this framework, Progressive Local Windows (PLW) blocks and Global Frequency Filtering (GFF) blocks are specifically designed, which achieve efficient mining of multi-scale information while maintaining lower complexity. Ultimately, forecasting is achieved by integrating the semantic information outlined above. Our proposed method, TF4TF, has achieved state-of-the-art (SOTA) results on seven real-world time series forecasting datasets.

Highlights

A long-term time-series forecasting method considering multi-semantic information is proposed.
Being more efficient than existing multi-semantic long-term forecasting models.
Achieving sota performance across multiple mainstream benchmarks for LTSF task.

References

[1]
Y. Nie, N. H. Nguyen, P. Sinthong, J. Kalagnanam, A Time Series is Worth 64 Words: Long-term Forecasting with Transformers, in: International Conference on Learning Representations, 2023.
[2]
Shao Z., Wang F., Xu Y., Wei W., Yu C., Zhang Z., Yao D., Sun T., Jin G., Cao X., et al., Exploring progress in multivariate time series forecasting: Comprehensive benchmarking and heterogeneity analysis, IEEE Trans. Knowl. Data Eng. (2024).
[3]
S. Papadimitriou, P. Yu, Optimal multi-scale patterns in time series streams, in: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, 2006, pp. 647–658.
[4]
Wu H., Zhou H., Long M., Wang J., Interpretable weather forecasting for worldwide stations with a unified deep model, Nat. Mach. Intell. 5 (6) (2023) 602–611.
[5]
Y. Matsubara, Y. Sakurai, W.G. Van Panhuis, C. Faloutsos, FUNNEL: automatic mining of spatially coevolving epidemics, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 105–114.
[6]
Faruk D.Ö., A hybrid neural network and ARIMA model for water quality time series prediction, Eng. Appl. Artif. Intell. 23 (4) (2010) 586–594.
[7]
Hyndman R.J., Koehler A.B., Snyder R.D., Grose S., A state space framework for automatic forecasting using exponential smoothing methods, Int. J. Forecast. 18 (3) (2002) 439–454.
[8]
Ariyo A.A., Adewumi A.O., Ayo C.K., Stock price prediction using the ARIMA model, in: 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, IEEE, 2014, pp. 106–112.
[9]
A. Zeng, M. Chen, L. Zhang, Q. Xu, Are Transformers Effective for Time Series Forecasting?, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2023.
[10]
Oreshkin B.N., Carpov D., Chapados N., Bengio Y., N-BEATS: Neural basis expansion analysis for interpretable time series forecasting, 2019, arXiv preprint arXiv:1905.10437.
[11]
Zhang T., Zhang Y., Cao W., Bian J., Yi X., Zheng S., Li J., Less is more: Fast multivariate time series forecasting with light sampling-oriented mlp structures, 2022, arXiv preprint arXiv:2207.01186.
[12]
K. Yi, Q. Zhang, W. Fan, S. Wang, P. Wang, H. He, N. An, D. Lian, L. Cao, Z. Niu, Frequency-domain MLPs are More Effective Learners in Time Series Forecasting, in: Thirty-Seventh Conference on Neural Information Processing Systems, 2023.
[13]
Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, L. Sun, Transformers in time series: a survey, in: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023, pp. 6778–6786.
[14]
Bai S., Kolter J.Z., Koltun V., An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, 2018, arXiv preprint arXiv:1803.01271.
[15]
Liu M., Zeng A., Chen M., Xu Z., Lai Q., Ma L., Xu Q., Scinet: Time series modeling and forecasting with sample convolution and interaction, Adv. Neural Inf. Process. Syst. 35 (2022) 5816–5828.
[16]
H. Wang, J. Peng, F. Huang, J. Wang, J. Chen, Y. Xiao, MICN: Multi-scale Local and Global Context Modeling for Long-term Series Forecasting, in: International Conference on Learning Representations, 2023.
[17]
D. Luo, X. Wang, Moderntcn: A modern pure convolution structure for general time series analysis, in: The Twelfth International Conference on Learning Representations, 2024.
[18]
H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, M. Long, TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis, in: International Conference on Learning Representations, 2023.
[19]
Li S., Jin X., Xuan Y., Zhou X., Chen W., Wang Y.-X., Yan X., Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting, Adv. Neural Inf. Process. Syst. 32 (2019).
[20]
H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 12, 2021, pp. 11106–11115.
[21]
Kitaev N., Kaiser Ł., Levskaya A., Reformer: The efficient transformer, 2020, arXiv preprint arXiv:2001.04451.
[22]
S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A.X. Liu, S. Dustdar, Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting, in: International Conference on Learning Representations, 2022.
[23]
T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, R. Jin, FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting, in: Proc. 39th International Conference on Machine Learning, 2022.
[24]
Wu H., Xu J., Wang J., Long M., Autoformer: Decomposition transformers with Auto-Correlation for long-term series forecasting, in: Advances in Neural Information Processing Systems, 2021.
[25]
V. Ekambaram, A. Jati, N. Nguyen, P. Sinthong, J. Kalagnanam, Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 459–469.
[26]
Gong Z., Tang Y., Liang J., Patchmixer: A patch-mixing architecture for long-term time series forecasting, 2023, arXiv preprint arXiv:2310.00655.
[27]
C. Yu, F. Wang, Z. Shao, T. Sun, L. Wu, Y. Xu, Dsformer: A double sampling transformer for multivariate time series long-term prediction, in: Proceedings of the 32nd ACM international conference on information and knowledge management, 2023, pp. 3062–3072.
[28]
Y. Li, S. Qi, Z. Li, Z. Rao, L. Pan, Z. Xu, SMARTformer: Semi-autoregressive transformer with efficient integrated window attention for long time series forecasting, in: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023, pp. 2169–2177.
[29]
Yi K., Zhang Q., Cao L., Wang S., Long G., Hu L., He H., Niu Z., Fan W., Xiong H., A survey on deep learning based time series analysis with frequency transformation, 2023, arXiv preprint arXiv:2302.02173.
[30]
Li Z., Qi S., Li Y., Xu Z., Revisiting long-term time series forecasting: An investigation on linear mapping, 2023, arXiv preprint arXiv:2305.10721.
[31]
Das A., Kong W., Leach A., Mathur S., Sen R., Yu R., Long-term forecasting with tide: Time-series dense encoder, 2023, arXiv preprint arXiv:2304.08424.
[32]
Li Z., Rao Z., Pan L., Xu Z., Mts-mixers: Multivariate time series forecasting via factorized temporal and channel mixing, 2023, arXiv preprint arXiv:2302.04501.
[33]
Iandola F.N., Han S., Moskewicz M.W., Ashraf K., Dally W.J., Keutzer K., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size, 2016, arXiv preprint arXiv:1602.07360.
[34]
Truong H.T., Ta B.P., Le Q.A., Nguyen D.M., Le C.T., Nguyen H.X., Do H.T., Nguyen H.T., Tran K.P., Light-weight federated learning-based anomaly detection for time-series data in industrial control systems, Comput. Ind. 140 (2022).
[35]
Z. Shao, Z. Zhang, F. Wang, Y. Xu, Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting, in: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, 2022, pp. 1567–1577.
[36]
Zhang Z., Han Y., Ma B., Liu M., Geng Z., Temporal chain network with intuitive attention mechanism for long-term series forecasting, IEEE Trans. Instrum. Meas. (2023).
[37]
Salinas D., Flunkert V., Gasthaus J., Januschowski T., DeepAR: Probabilistic forecasting with autoregressive recurrent networks, Int. J. Forecast. 36 (3) (2020) 1181–1191.
[38]
G. Lai, W.-C. Chang, Y. Yang, H. Liu, Modeling long-and short-term temporal patterns with deep neural networks, in: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018, pp. 95–104.
[39]
Chen Y., Gel Y., Poor H.V., Time-conditioned dances with simplicial complexes: Zigzag filtration curve based supra-hodge convolution networks for time-series forecasting, Adv. Neural Inf. Process. Syst. 35 (2022) 8940–8953.
[40]
Yi K., Zhang Q., Fan W., He H., Hu L., Wang P., An N., Cao L., Niu Z., FourierGNN: Rethinking multivariate time series forecasting from a pure graph perspective, Adv. Neural Inf. Process. Syst. 36 (2024).
[41]
T. Kim, J. Kim, Y. Tae, C. Park, J.-H. Choi, J. Choo, Reversible instance normalization for accurate time-series forecasting against distribution shift, in: International Conference on Learning Representations, 2021.
[42]
W. Fan, P. Wang, D. Wang, D. Wang, Y. Zhou, Y. Fu, Dish-ts: a general paradigm for alleviating distribution shift in time series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, No. 6, 2023, pp. 7522–7529.
[43]
Fan W., Yi K., Ye H., Ning Z., Zhang Q., An N., Deep frequency derivative learning for non-stationary time series forecasting, 2024, arXiv preprint arXiv:2407.00502.
[44]
Liu Y., Wu H., Wang J., Long M., Non-stationary transformers: Exploring the stationarity in time series forecasting, Adv. Neural Inf. Process. Syst. 35 (2022) 9881–9893.
[45]
S. Smyl, K. Kuber, Data preprocessing and augmentation for multiple short time series forecasting with recurrent neural networks, in: 36th International Symposium on Forecasting, 2016.
[46]
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
[47]
J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
[48]
Bao H., Dong L., Wei F., Wang W., Yang N., Liu X., Wang Y., Gao J., Piao S., Zhou M., et al., Unilmv2: Pseudo-masked language models for unified language model pre-training, in: International Conference on Machine Learning, PMLR, 2020, pp. 642–652.
[49]
Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W., Liu P.J., Exploring the limits of transfer learning with a unified text-to-text transformer, J. Mach. Learn. Res. 21 (140) (2020) 1–67.
[50]
Parseval M.-A., Mémoire sur les séries et sur l’intégration complète d’une équation aux différences partielles linéaires du second ordre, à coefficients constants, Mém. prés. par divers savants, Acad. Sci., Paris,(1) 1 (638–648) (1806) 42.
[51]
McGillem C.D., Cooper G.R., Continuous and discrete signal and system analysis, 1991.
[52]
Rabiner L.R., Gold B., Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, 1975.
[53]
Z. Huang, Z. Zhang, C. Lan, Z.-J. Zha, Y. Lu, B. Guo, Adaptive Frequency Filters As Efficient Global Token Mixers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 6049–6059.
[54]
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., et al., Pytorch: An imperative style, high-performance deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).
[55]
Kingma D.P., Ba J., Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 617, Issue C
Feb 2025
1098 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 18 February 2025

Author Tags

  1. Long-term forecasting
  2. Multi-semantic
  3. Time series

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media