Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Grouping by Cycle Length (GCL) for long-range FiWi networks

Published: 01 July 2016 Publication History

Abstract

The integration of wireless access networks with optical access networks in the so-called fiber-wireless (FiWi) networks has recently emerged as a promising strategy for providing flexible network services at relatively high transmission rates. FiWi network research to date has mainly focused on optical access networks with the normal reach (around 20km) of passive optical networks (PONs). We make two main contributions to the study of FiWi networking with a long-range PON with a propagation distance on the order of 100km in this paper. First, through extensive simulations, we investigate the packet delays when relatively low-rate traffic that has traversed a wireless network is mixed with conventional high-rate PON-only traffic. We consider a range of different FiWi network architectures with different dynamic bandwidth allocation (DBA) mechanisms. Second, we closely examine the grouping of the optical network units (ONUs) in the double-phase polling (DPP) DBA mechanism in long-range FiWi networks. We introduce a novel grouping by cycle length (GCL) strategy that achieves favorable packet delay performance.

References

[1]
Y. Dashti, A. Mercian, M. Reisslein, Evaluation of dynamic bandwidth allocation with clustered routing in FiWi networks, in Proceedings of IEEE LANMAN, May 2014, pp. 1-6.
[2]
N. Ghazisaidi, M. Maier, Fiber-wireless (FiWi) access networks, IEEE Netw., 25 (2011) 36-42.
[3]
X. Gong, L. Guo, Y. Liu, Y. Zhou, H. Li, Optimization mechanisms in multi-dimensional and flexible PONs, Opt. Switch. Netw., 18 (2015) 120-134.
[4]
S. Sarkar, S. Dixit, B. Mukherjee, Hybrid wireless-optical broadband-access network (WOBAN), IEEE/OSA J. Lightw. Technol., 25 (2007) 3329-3340.
[5]
L. Kazovsky, S. Wong, T. Ayhan, K. Albeyoglu, M. Ribeiro, A. Shastri, Hybrid optical-wireless access networks, Proc. IEEE, 100 (2012) 1197-1225.
[6]
A. Fernandez, N. Stol, CAPEX and OPEX simulation study of cost-efficient protection mechanisms in passive optical networks, Opt. Switch. Netw., 17 (2015) 14-24.
[7]
I.-S. Hwang, A.T. Liem, A hybrid scalable peer-to-peer IP-based multimedia services architecture in ethernet passive optical networks, IEEE/OSA J. Lightw. Technol., 31 (2013) 213-222.
[8]
A.T. Liem, I.-S. Hwang, A. Nikoukar, J.-Y. Lee, Genetic expression programming-based DBA for enhancing peer-assisted music-on-demand service in EPON, Opt. Fiber Technol., 22 (2015) 28-35.
[9]
C. Matrakidis, T. Orphanoudakis, A. Stavdas, J. Fernandez-Palacios Gimenez, A. Manzalini, HYDRA, IEEE/OSA J. Lightw. Technol., 33 (2015) 339-348.
[10]
M. Mahloo, J. Chen, L. Wosinska, PON versus AON, Opt. Switch. Netw., 15 (2015) 1-9.
[11]
I.-F. Chao, T.-M. Zhang, A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme, Opt. Fiber Technol., 23 (2015) 95-103.
[12]
M.D. Andrade, A. Buttaboni, M. Tornatore, P. Boffi, P. Martelli, A. Pattavina, Optimization of long-reach TDM/WDM passive optical networks, Opt. Switch. Netw., 16 (2015) 36-45.
[13]
A. Helmy, H. Fathallah, H. Mouftah, Interleaved polling versus multi-thread polling for bandwidth allocation in long-reach PONs, IEEE/OSA J. Opt. Commun. Netw., 4 (2012) 210-218.
[14]
B. Skubic, J. Chen, J. Ahmed, B. Chen, L. Wosinska, B. Mukherjee, Dynamic bandwidth allocation for long-reach PON, IEEE Commun. Mag., 48 (2010) 100-108.
[15]
S. Choi, S. Lee, T. Lee, M. Chung, H. Choo, Double-phase polling algorithm based on partitioned ONU subgroups for high utilization in EPONs, IEEE/OSA J. Opt. Commun. Netw., 1 (2009) 484-497.
[16]
F. Aurzada, M. Lévesque, M. Maier, M. Reisslein, FiWi access networks based on next-generation PON and gigabit-class WLAN technologies, IEEE/ACM Trans. Netw., 22 (2014) 1176-1189.
[17]
K. Saito, H. Nishiyama, N. Kato, H. Ujikawa, K.-I. Suzuki, A MPCP-based centralized rate control method for mobile stations in FiWi access networks, IEEE Wirel. Commun. Lett., 4 (2015) 205-208.
[18]
N. Zaker, B. Kantarci, M. Erol-Kantarci, H.T. Mouftah, Smart grid monitoring with service differentiation via epon and wireless sensor network convergence, Opt. Switch. Netw., 14 (2014) 53-68.
[19]
Z. Zheng, J. Wang, J. Wang, A study of network throughput gain in optical-wireless (FiWi) networks subject to peer-to-peer communications, IEEE ICC (2009) 1-6.
[20]
P. Alvarez, N. Marchetti, D. Payne, M. Ruffini, Backhauling mobile systems with XG-PON using grouped assured bandwidth, in: Proceedings of IEEE NOC, 2014, pp. 91-96.
[21]
H. Beyranvand, W. Lim, M. Maier, C. Verikoukis, J. Salehi, Backhaul-aware user association in FiWi enhanced LTE-A heterogeneous networks, IEEE Trans. Wireless Commun., 14 (2015) 2992-3003.
[22]
M. Milosavljevic, M. Thakur, P. Kourtessis, J. Mitchell, J. Senior, Demonstration of wireless backhauling over long-reach PONs, IEEE/OSA J. Lightw. Technol., 30 (2012) 811-817.
[23]
N. Shibata, S. Kuwano, J. Terada, H. Kimura, Dynamic IQ data compression using wireless resource allocation for mobile front-haul with TDM-PON invited, IEEE/OSA J. Opt. Commun. Netw., 7 (2015) A372-A378.
[24]
N. Shibata, T. Tashiro, S. Kuwano, N. Yuki, J. Terada, A. Otaka, Mobile front-haul employing ethernet-based TDM-PON system for small cells, in: Proceedings of OSA OFC, 2015, M2J-1.
[25]
U.R. Bhatt, N. Chouhan, R. Upadhyay, Hybrid algorithm, Opt. Fiber Technol., 22 (2015) 76-83.
[26]
Y. Liu, Q. Song, B. Li, R. Ma, Load balanced optical network unit (ONU) placement in cost-efficient fiber-wireless (FiWi) access network, Opt.-Int. J. Light Electron Opt., 124 (2013) 4594-4601.
[27]
B. Li, Y. Liu, L. Guo, Load balanced optical-network-unit (ONU) placement algorithm in wireless-optical broadband access networks, Int. J. Fut. Comput. Commun., 2 (2013) 106-110.
[28]
Y. Liu, C. Zhou, Y. Cheng, S2U, Comput. Commun., 34 (2011) 1375-1388.
[29]
C. Li, W. Guo, W. Hu, M. Xia, Energy-efficient dynamic bandwidth allocation for EPON networks with sleep mode ONUs, Opt. Switch. Netw., 15 (2015) 121-133.
[30]
M.G. Bade, M. Toycan, S.D. Walker, Cost and energy efficient operation of converged, reconfigurable optical wireless networks, Opt. Switch. Netw., 18 (2015) 71-80.
[31]
Z. Fadlullah, H. Nishiyama, N. Kato, H. Ujikawa, K. Suzuki, N. Yoshimoto, Smart FiWi networks, IEEE Intell. Syst., 28 (2013) 86-91.
[32]
S. Sadon, N. Din, N. Radzi, M.B. Yaacob, M. Maier, M. Al-Mansoori, Efficient bandwidth allocation methods in upstream EPON, in:, Transactionson Engineering Technology, Springer, Dordrecht, Netherlands, 2014, pp. 459-471.
[33]
J. Zhao, N. Feng, D. Ren, Research on energy efficiency based on differentiated QoS in fiber-wireless broadband access network, Opt.-Int. J. Light Electron Opt., 126 (2015) 350-355.
[34]
Y. Liu, L. Guo, C. Yu, Y. Yu, X. Wang, Planning of survivable long-reach passive optical network (LR-PON) against single shared-risk link group (SRLG) failure, Opt. Switch. Netw., 11 (2014) 167-176.
[35]
Y. Yu, Y. Liu, Y. Zhou, P. Han, Planning of survivable cloud-integrated wireless-optical broadband access network against distribution fiber failure, Opt. Switch. Netw., 14 (2014) 217-225.
[36]
B. Kantarci, N. Naas, H. Mouftah, Energy-efficient DBA and QoS in FiWi networks constrained to metro-access convergence, in: Proceedings of IEEE International Conference on Transparent Optical Network (ICTON), 2012, pp. 1-4.
[37]
B. Kantarci, H. Mouftah, Energy efficiency in the extended-reach fiber wireless access networks, IEEE Netw., 26 (2012) 28-35.
[38]
M. Maier, Survivability techniques for NG-PONs and FiWi access networks, in: Proceedings of IEEE ICC, 2012, pp. 6214-6219.
[39]
A. Ragheb, H. Fathallah, Performance analysis of next generation- PON (NG-PON) architectures, in: Proceedings of IEEE HONET, 2011, pp. 339-345.
[40]
T. Jimenez, N. Merayo, R.J. Duran, P. Fernandez, I. de Miguel, J.C. Aguado, R.M. Lorenzo, E.J. Abril, A PID-based algorithm to guarantee QoS delay requirements in LR-PONs, Opt. Switch. Netw., 14 (2014) 78-92.
[41]
V. Sales, J. Segarra, J. Prat, An efficient dynamic bandwidth allocation for GPON long-reach extension systems, Opt. Switch. Netw., 14 (2014) 69-77.
[42]
N. Radzi, N. Din, S. Sadon, M. Al-Mansoori, The delay and fairness study of a centralised EPON DBA algorithm, in: Proceedings of IEEE Region 10 Symposium, 2014, pp. 301-305.
[43]
T. Tsang, Dynamic bandwidth allocation scheme in LR-PON with performance modelling and analysis, Int. J. Comput. Netw. Commun., 6 (2014) 1-16.
[44]
F. Usmani, S. Zaidi, A. Awais, M.Y.A. Raja, Efficient dynamic bandwidth allocation schemes in long-reach passive optical networks-a survey, in: Proceedings of IEEE HONET, 2014, pp. 36-40.
[45]
T.Y. Wu, P. Qin, L. Wang, H. Yan, X. Chen, A hierarchical DBA algorithm for high fairness in TDM-PON, in: Proceedings of OSA ACPC, 2014, ATh1H-5.
[46]
S. Bindhaiq, A.S.M. Supa, N. Zulkifli, A.B. Mohammad, R.Q. Shaddad, M.A. Elmagzoub, A. Faisal, Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation passive optical network stage 2 (NG-PON2), Opt. Switch. Netw., 15 (2015) 53-66.
[47]
N. Cheng, L. Wang, D. Liu, B. Gao, J. Gao, X. Zhou, H. Lin, F. Effenberger, Flexible TWDM PON with load balancing and power saving, in: Proceedings of ECOC, 2013, pp. 576-578.
[48]
S. Dai, Z. Zheng, J. Wang, X. Zhang, Wavelength assignment scheme of ONUs in hybrid TDM/WDM fiber-wireless networks, in: Proceedings of IEEE ICC, 2010, pp. 1-5.
[49]
H. Erkan, G. Ellinas, A. Hadjiantonis, R. Dorsinville, M. Ali, Dynamic and fair resource allocation in a distributed ring-based WDM-PON architectures, Comput. Commun., 36 (2013) 1559-1569.
[50]
K. Hara, H. Nakamura, S. Kimura, M. Yoshino, S. Nishihara, S. Tamaki, J. Kani, N. Yoshimoto, H. Hadama, Flexible load balancing technique using dynamic wavelength bandwidth allocation (DWBA) toward 100 Gbit/s-class-WDM/TDM-PON, in: Proceedings of IEEE ECOC, 2010, pp. 1-3.
[51]
S. Kaneko, T. Yoshida, S. Furusawa, M. Sarashina, H. Tamai, A. Suzuki, T. Mukojima, S. Kimura, N. Yoshimoto, First λ-tunable dynamic load-balancing operation enhanced by 3-msec bidirectional hitless tuning on symmetric 40-Gbit/s WDM/TDM-PON, in: Proceedings of OSA OFC, 2014, p. Th5A-4.
[52]
C. Ni, C. Gan, H. Chen, Joint bandwidth allocation on dedicated and shared wavelengths for QoS support in multi-wavelength optical access network, IET Commun., 7 (2013) 1863-1870.
[53]
C. Ni, C. Gan, H. Chen, M. Yin, Novel bandwidth allocation with quota-based excess-distribution algorithm and wavelength assignment in multi-wavelength access network, Opt. Switch. Netw., 13 (2014) 103-111.
[54]
A. Razmkhah, A.G. Rahbar, OSLG, Opt. Fiber Technol., 17 (2011) 586-593.
[55]
T. Yoshida, S. Kaneko, S. Kimura, N. Yoshimoto, An automatic load-balancing DWBA algorithm considering long-time tuning devices for λ-tunable WDM/TDM-PON, in: Proceedings of IEEE ECOC, 2013, pp. 1-3.
[56]
M. Hossen, M. Hanawa, Multi-OLT and multi-wavelength PON-based open access network for improving the throughput and quality of services, Opt. Switch. Netw., 15 (2015) 148-159.
[57]
S.-I. Choi, A new multi-thread polling based dynamic bandwidth allocation in long-reach PON, in: Proceedings of IEEE COIN, 2014, pp. 1-2.
[58]
A. Mercian, M. McGarry, M. Reisslein, Offline and online multi-thread polling in long-reach PONs: a critical evaluation, IEEE/OSA J. Lightw. Technol. 31(12) (2013) 2018-2028.
[59]
H. Song, B.-W. Kim, B. Mukherjee, Multi-thread polling, IEEE J. Sel. Areas Commun., 27 (2009) 134-142.
[60]
C.-C. Sue, T.-C. Lee, Elastic ONU-class-based idle time elimination algorithm for Ethernet passive optical networks, Photonic Netw. Commun., 25 (2013) 105-119.
[61]
I. Gravalos, K. Yiannopoulos, G. Papadimitriou, E.A. Varvarigos, A modified max-min fair dynamic bandwidth allocation algorithm for XG-PONs, in: Proceedings of IEEE NOC, 2014, pp. 57-62.
[62]
I. Gravalos, K. Yiannopoulos, G. Papadimitriou, E. Varvarigos, The max-min fair approach on dynamic bandwidth allocation for XG-PONs, Trans. Emerg. Telecommun. Technol., 26 (2015) 1212-1224.
[63]
J.-R. Lai, H.-Y. Huang, W.-P. Chen, L.K. Wang, M.-Y. Cho, Design and analytical analysis of a novel DBA algorithm with dual-polling tables in EPON, Math. Probl. Eng., 501 (2015) 1-11.
[64]
J.-R. Lai, W.-P. Chen, High utilization dynamic bandwidth allocation algorithm based on sorting report messages with additive-polling thresholds in EPONs, Opt. Switch. Netw., 18 (2015) 81-95.
[65]
C. Ni, C. Gan, Z. Gao, Dynamic bandwidth allocation with effective utilization of polling interval over WDM/TDM PON, J. Opt. Commun., 35 (2014) 313-318.
[66]
C.-C. Sue, W.-N. Sung, Fitting scheduling timing-elastic weighted granting (FST-EWG), IEEE/OSA J. Opt. Commun. Netw., 4 (2012) 468-479.
[67]
C.-C. Sue, K.-C. Chuang, Y.-T. Wu, S.-J. Lin, C.-C. Liu, Active intra-ONU scheduling with proportional guaranteed bandwidth in long-reach EPONs, Photonic Netw. Commun., 27 (2014) 106-118.
[68]
M. McGarry, M. Reisslein, Investigation of the DBA algorithm design space for EPONs, IEEE/OSA J. Lightw. Technol., 30 (2012) 2271-2280.
[69]
J. Zheng, H. Mouftah, A survey of dynamic bandwidth allocation algorithms for Ethernet Passive Optical Networks, Opt. Switch. Netw., 6 (2009) 151-162.
[70]
A. Mercian, M. McGarry, M. Reisslein, Impact of report message scheduling (RMS) in 1G/10G EPON and GPON, Opt. Switch. Netw., 12 (2014) 1-13.
[71]
I.-S. Hwang, J.-Y. Lee, K.R. Lai, A.T. Liem, Generic QoS-aware interleaved dynamic bandwidth allocation in scalable EPONs, IEEE/OSA J. Opt. Commun. Netw., 4 (2012) 99-107.
[72]
J.-Y. Lee, I. Hwang, A. Nikoukar, A.T. Liem, Comprehensive performance assessment of bipartition upstream bandwidth assignment schemes in GPON, IEEE/OSA J. Opt. Commun. Netw., 5 (2013) 1285-1295.
[73]
I.-S. Hwang, T.-J. Yeh, M. Lotfolahi, B.-J. Hwang, A. Nikoukar, Synchronous interleaved DBA for upstream transmission over GPON-LTE converged network, in Proceedings of International MultiConference of Engineering and Computer Science, vol. 2, 2015.
[74]
Ö.C. Turna, M.A. Aydın, A.H. Zaim, T. Atmaca, A new dynamic bandwidth allocation algorithm based on online-offline mode for EPON, Opt. Switch. Netw., 15 (2015) 29-43.
[75]
M. McGarry, M. Reisslein, F. Aurzada, M. Scheutzow, Shortest propagation delay (SPD) first scheduling for EPONs with heterogeneous propagation delays, IEEE J. Sel. Areas Commun., 28 (2010) 849-862.
[76]
S.N. Hong, H.N. Anh, T.H. Trong, A study on impacts of RTT inaccuracy on dynamic bandwidth allocation in PON and solution, Int. J. Comput. Netw. Commun., 6 (2014) 183-192.
[77]
A. Bianco, J.M. Finochietto, G. Giarratana, F. Neri, C. Piglione, Measurement-based reconfiguration in optical ring metro networks, IEEE/OSA J. Lightw. Technol., 23 (2005) 3156-3166.
[78]
A. Colmegna, S. Galli, M. Goldburg, Methods for supporting vectoring when multiple service providers share the cabinet area, in: FASTWEB/ASSIA Vectoring White Paper, 2012.
[79]
A. Elwalid, D. Mitra, I. Saniee, I. Widjaja, Routing and protection in GMPLS networks, IEEE/OSA J. Lightw. Technol., 21 (2003) 2828-2838.
[80]
A. Gençata, B. Mukherjee, Virtual-topology adaptation for WDM mesh networks under dynamic traffic, IEEE/ACM Trans. Netw., 11 (2003) 236-247.
[81]
S. Floyd, V. Jacobson, The synchronization of periodic routing messages, IEEE/ACM Trans. Netw., 2 (1994) 122-136.
[82]
A.S. Reaz, V. Ramamurthi, S. Sarkar, D. Ghosal, S. Dixit, B. Mukherjee, CaDAR, IEEE/OSA J. Opt. Commun. Netw., 1 (2009) 392-403.
[83]
Y. Dashti, M. Reisslein, CluLoR, J. Netw., 9 (2014) 828-839.
[84]
A. Bianco, T. Bonald, D. Cuda, R.-M. Indre, Cost, power consumption and performance evaluation of metro networks, IEEE/OSA J. Opt. Commun. Netw., 5 (2013) 81-91.
[85]
I.-F. Chao, M. Yuang, Toward wireless backhaul using circuit emulation over optical packet-switched metro WDM ring network, IEEE/OSA J. Lightw. Technol., 31 (2013) 3032-3042.
[86]
M. Maier, M. Reisslein, A. Wolisz, A hybrid MAC protocol for a metro WDM network using multiple free spectral ranges of an arrayed-waveguide grating, Comput. Netw., 41 (2003) 407-433.
[87]
M. Scheutzow, M. Maier, M. Reisslein, A. Wolisz, Wavelength reuse for efficient packet-switched transport in an AWG-based metro WDM network, IEEE/OSA J. Lightw. Technol., 21 (2003) 1435-1455.
[88]
H.-S. Yang, M. Maier, M. Reisslein, W.M. Carlyle, A genetic algorithm-based methodology for optimizing multiservice convergence in a metro WDM network, IEEE/OSA J. Lightw. Technol., 21 (2003) 1114-1133.
[89]
P. Garfias, M. De Andrade, M. Tornatore, A. Buttaboni, S. Sallent, L. Gutiérrez, Energy-saving mechanism in WDM/TDM-PON based on upstream network traffic, Photonics, 1 (2014) 235-250.
[90]
A. Nikoukar, I.-S. Hwang, C.-J. Wang, M.S. Ab-Rahman, A.T. Liem, A SIEPON based transmitter sleep mode energy-efficient mechanism in EPON, Opt. Fiber Technol., 23 (2015) 78-89.
[91]
T.S.R. Shen, S. Yin, A.R. Dhaini, L.G. Kazovsky, Reconfigurable long-reach UltraFlow access network, IEEE/OSA J. Lightw. Technol., 32 (2014) 2353-2363.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Optical Switching and Networking
Optical Switching and Networking  Volume 21, Issue C
July 2016
101 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 July 2016

Author Tags

  1. Delay evaluation
  2. Dynamic bandwidth allocation (DBA)
  3. Excess bandwidth distribution
  4. Fiber-Wireless (FiWi) network
  5. Passive Optical Network (PON)

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media