Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Learning real-world heterogeneous noise models with a benchmark dataset

Published: 01 December 2024 Publication History

Abstract

Noise modeling is an important research field in computer vision; the design of an accurate model for imaging sensor noise depends on not only a comprehensive benchmark dataset of the real world, but also a precise design of the noise modeling algorithm. However, due to the inaccurate estimation method of noise-free images and limited shooting scenes, the current realistic datasets could not describe the diverse noise properties sufficiently. Moreover, popular parametric noise models are not sophisticated enough to characterize the real-world noise exactly. In this work, we first construct a more comprehensive dataset of the real world by capturing more indoor and outdoor scenes under different lighting conditions using diverse smartphones, then we propose a non-parametric noise estimation method capable of modeling the spatial heterogeneity of real-world noise patterns. Specifically, in order to characterize the spatial heterogeneity of real-world noise, we assume a non-i.i.d Gaussian distribution and propose a deep convolutional neural network (DCNN)-based approach for learning pixel-wise noise variance maps. To learn the pixel-wise variance map, we have constructed a variance estimation network mapping from the conditional signals (clean image, ISO, and camera model) to surrogate labels obtained from the nonlocal search of similar patches from the clean-noisy image pair. Finally, we conducted denoising and classification experiments using different kinds of simulated noisy images, compared to the Poisson-Gaussian and Noise Flow noise models, the proposed method achieves denoising performance improvements (PSNR) of 1.13 dB and 2.51 dB respectively on the proposed real-world test dataset, denoising and classification results on the real noisy data captured by mobile phones have verified that our approach is more accurate than current noise modeling methods.

Highlights

Current realistic datasets could not describe diverse noise properties sufficiently.
Parametric noise models cannot characterize the real-world noise exactly.
Constructing a more comprehensive real-world benchmark dataset.
Developing a pixel-wise variance estimation network.
Improved real-world denoising and classification performance.

References

[1]
T. Plotz, S. Roth, Benchmarking Denoising Algorithms with Real Photographs, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2750–2759.
[2]
Quan Y., Chen Y., Shao Y., Teng H., Xu Y., Ji H., Image denoising using complex-valued deep CNN, Pattern Recognit. 111 (2021).
[3]
Thakur R.K., Maji S.K., Multi scale pixel attention and feature extraction based neural network for image denoising, Pattern Recognit. 141 (2023).
[4]
Tian C., Zheng M., Zuo W., Zhang B., Zhang Y., Zhang D., Multi-stage image denoising with the wavelet transform, Pattern Recognit. 134 (2023).
[5]
Dabov K., Foi A., Katkovnik V., Egiazarian K., Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process. 16 (8) (2007) 2080–2095.
[6]
Dong W., Zhang L., Shi G., Li X., Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process. 22 (4) (2013) 1620–1630.
[7]
Köhler T., Bätz M., Naderi F., Kaup A., Maier A., Riess C., Toward bridging the simulated-to-real gap: Benchmarking super-resolution on real data, IEEE Trans. Pattern Anal. Mach. Intell. 42 (11) (2019) 2944–2959.
[8]
Anaya J., Barbu A., RENOIR-A benchmark dataset for real noise reduction evaluation, J. Vis. Commun. Image Represent. (2018) 144–154.
[9]
Xu J., Li H., Liang Z., Zhang D., Zhang L., Real-world noisy image denoising: A new benchmark, 2018, arXiv preprint arXiv:1804.02603.
[10]
A. Abdelhamed, S. Lin, M.S. Brown, A High-Quality Denoising Dataset for Smartphone Cameras, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1692–1700.
[11]
K. Wei, Y. Fu, J. Yang, H. Huang, A Physics-Based Noise Formation Model for Extreme Low-Light Raw Denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 2755–2764.
[12]
Liu C., Szeliski R., Kang S.B., Zitnick C.L., Freeman W.T., Automatic estimation and removal of noise from a single image, IEEE Trans. Pattern Anal. Mach. Intell. 30 (2) (2008) 299–314.
[13]
Foi A., Trimeche M., Katkovnik V., Egiazarian K.O., Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data, IEEE Trans. Image Process. 17 (10) (2008) 1737–1754.
[14]
Bergstra J., Bengio Y., Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (1) (2012) 281–305.
[15]
X. Wu, M. Liu, Y. Cao, D. Ren, W. Zuo, Unpaired Learning of Deep Image Denoising, in: European Conference on Computer Vision, 2020, pp. 352–368.
[16]
K. Chang, R. Wang, H. Lin, Y. Liu, C. Chen, Y. Chang, H. Chen, Learning Camera-Aware Noise Models, in: European Conference on Computer Vision, 2020, pp. 343–358.
[17]
Z. Yue, H. Yong, Q. Zhao, D. Meng, L. Zhang, Variational Denoising Network: Toward Blind Noise Modeling and Removal, in: Neural Information Processing Systems (NeurIPS), 2019, pp. 1688–1699.
[18]
A. Abdelhamed, M. Brubaker, M.S. Brown, Noise Flow: Noise Modeling With Conditional Normalizing Flows, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3165–3173.
[19]
A. Maleky, S. Kousha, M.S. Brown, M.A. Brubaker, Noise2noiseflow: realistic camera noise modeling without clean images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 17632–17641.
[20]
Liang H., Liu R., Wang Z., Ma J., Tian X., Variational Bayesian deep network for blind Poisson denoising, Pattern Recognit. 143 (2023).
[21]
Yan H., Chen X., Tan V.Y., Yang W., Wu J., Feng J., Unsupervised image noise modeling with self-consistent GAN, 2019, arXiv preprint arXiv:1906.05762.
[22]
D. Kim, J.R. Chung, S. Jung, GRDN: Grouped Residual Dense Network for Real Image Denoising and GAN-Based Real-World Noise Modeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 2086–2094.
[23]
Yue Z., Zhao Q., Zhang L., Meng D., Dual adversarial network: Toward real-world noise removal and noise generation, in: European Conference on Computer Vision, Springer, 2020, pp. 41–58.
[24]
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.C. Courville, Y. Bengio, Generative Adversarial Nets, in: Neural Information Processing Systems, NeurIPS, 2014, pp. 2672–2680.
[25]
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of wasserstein gans, in: Neural Information Processing Systems, NeurIPS, 2017, pp. 5767–5777.
[26]
F. Zhu, G. Chen, P. Heng, From Noise Modeling to Blind Image Denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 420–429.
[27]
T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, J.T. Barron, Unprocessing Images for Learned Raw Denoising, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 11036–11045.
[28]
J. Schoukens, Y. Rolain, G. Vandersteen, R. Pintelon, User friendly Box-Jenkins identification using nonparametric noise models, in: IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 2148–2153.
[29]
D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: International Conference on Learning Representations, ICLR, 2014.
[30]
D.J. Rezende, S. Mohamed, Variational Inference with Normalizing Flows, in: Proceedings of the International Conference on Machine Learning, 2015, pp. 1530–1538.
[31]
J. Chen, J. Chen, H. Chao, M. Yang, Image Blind Denoising With Generative Adversarial Network Based Noise Modeling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3155–3164.
[32]
K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
[33]
G. Huang, Z. Liu, L. van der Maaten, K.Q. Weinberger, Densely Connected Convolutional Networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
[34]
M. Sandler, A.G. Howard, M. Zhu, A. Zhmoginov, L. Chen, MobileNetV2: Inverted Residuals and Linear Bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
[35]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
[36]
O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, 2015, pp. 234–241.
[37]
Badrinarayanan V., Kendall A., Cipolla R., Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39 (12) (2017) 2481–2495.
[38]
K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.
[39]
D. Bolya, C. Zhou, F. Xiao, Y.J. Lee, Yolact: Real-time instance segmentation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9157–9166.
[40]
Sunnetci K.M., Kaba E., Celiker F.B., Alkan A., Deep network-based comprehensive parotid gland tumor detection, Academic Radiol. 31 (1) (2024) 157–167.
[41]
Bochkovskiy A., Wang C.-Y., Liao H.-Y.M., Yolov4: Optimal speed and accuracy of object detection, 2020, arXiv preprint arXiv:2004.10934.
[42]
Ren S., He K., Girshick R., Sun J., Faster r-cnn: Towards real-time object detection with region proposal networks, Adv. Neural Inf. Process. Syst. 28 (2015).
[43]
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.
[44]
Dai P., Yao S., Li Z., Zhang S., Cao X., ACE: Anchor-free corner evolution for real-time arbitrarily-oriented object detection, IEEE Trans. Image Process. 31 (2022) 4076–4089.
[45]
Chen C., Xiong Z., Tian X., Zha Z.-J., Wu F., Real-world image denoising with deep boosting, IEEE Trans. Pattern Anal. Mach. Intell. 42 (12) (2019) 3071–3087.
[46]
D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: International Conference on Learning Representations, ICLR, 2015.
[47]
A. Abdelhamed, M. Afifi, R. Timofte, M.S. Brown, Ntire 2020 challenge on real image denoising: Dataset, methods and results, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 496–497.
[48]
Zhang K., Zuo W., Chen Y., Meng D., Zhang L., Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process. 26 (7) (2017) 3142–3155.
[49]
Li G., Fang Q., Zha L., Gao X., Zheng N., HAM: Hybrid attention module in deep convolutional neural networks for image classification, Pattern Recognit. 129 (2022).
[50]
Ning X., Tian W., Yu Z., Li W., Bai X., Wang Y., HCFNN: high-order coverage function neural network for image classification, Pattern Recognit. 131 (2022).
[51]
Diamond S., Sitzmann V., Julca-Aguilar F.D., Boyd S.P., Wetzstein G., Heide F., Dirty pixels: Towards end-to-end image processing and perception, ACM Trans. Graph. 40 (3) (2021) 1–15.
[52]
W. Shi, J. Caballero, F. Huszar, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Pattern Recognition
Pattern Recognition  Volume 156, Issue C
Dec 2024
1441 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 December 2024

Author Tags

  1. Benchmark dataset
  2. Noise modeling
  3. Deep convolutional neural network
  4. Real denoising

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media