Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Transport in the IP-based Internet of Things: : status report

Published: 01 January 2023 Publication History

Abstract

As the Internet of Things (IoT) permeates different application environments, some particular requirements are to be met for each of them. For instance, industrial environments may pose the need for real-time, reliable protocols, while the requirements for telemetry environments could be met with simple, non-reliable protocols. Several IoT-specific protocols have been proposed at the application and lower-level layers, while the transport layer is mostly dependent on legacy Internet protocols such as UDP and TCP. We provide an exploratory survey of what has been proposed for the IoT transport layer, as reported in the literature

References

[1]
K. Ashton, That ‘internet of things’ thing, RFID journal 22 (7) (2009) 97–114.
[2]
W. Kassab, K.A. Darabkh, A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations, Journal of Network and Computer Applications 163 (2020).
[3]
L. Atzori, A. Lera, G. Morabito, The internet of things: A survey, Computer Networks 24 (2010) 2787–2805.
[4]
J.W. Hui, D.E. Culler, Extending IP to Low-Power, Wireless Personal Area Networks, IEEE Internet Computing 12 (4) (2008) 37–45.
[5]
J. H. G. Montenegro, N. Kushalnagar, D. Culler, Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944, RFC Editor (09 2007).
[6]
J. Nieminen, IPv6 over BLUETOOTH(R) Low Energy, RFC 7668, RFC Editor (10 2015).
[7]
C. Gomez, et al., From 6LoWPAN to 6Lo: Expanding the universe of IPv6-supported technologies for the Internet of Things, IEEE Communications Magazine 55 (12) (2017) 148–155.
[8]
C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, B. Raymor, CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets, RFC 8323, RFC Editor (02 2018).
[9]
K. B. A. Banks, E. Briggs, R. Gupta, Mqtt version 5.0, Oasis standard, OASIS Open (03 2019).
[10]
O. M. Alliance, Lightweight Machine to Machine Technical Specification: Core, Tech Spec 1, Open Mobile Alliance (11 2020).
[11]
M. E. C. Bormann, A. Keranen, Terminology for constrained-node networks, RFC 7228, RFC Editor (05 2014).
[12]
J. Kurose, K. Ross, Computer networking: A top-down approach, Pearson Education. Inc., 2017, 7/E.
[13]
R. Stewart, Stream control transmission protocol, RFC 4960, RFC Editor (09 2007).
[14]
E. Kohler, M. Handley, S. Floyd, Datagram Congestion Control Protocol (DCCP), RFC 4340, RFC Editor (03 2006).
[15]
J. Postel, Transmission control protocol, RFC 793, RFC Editor (09 1981).
[16]
V. Jacobson, Congestion avoidance and control, Comput. Commun. Rev 18 (1988) 314–329.
[17]
E.B.M. Allman, V. Paxson, TCP Congestion Control (2009) RFC 5681, RFC Editor0.
[18]
S. Floyd, Metrics for the evaluation of congestion control mechanisms, RFC 5166, RFC Editor (03 2008).
[19]
J. Lorincz, Z. Klarin, J. Ožegović, A Comprehensive Overview of TCP Congestion Control in 5G Networks: Research Challenges and Future Perspectives, Sensors 21 (13) (2021) 4510.
[20]
N. Mishra, et al., An analysis of iot congestion control policies, Procedia computer science 132 (2018) 444–450.
[21]
J. Iyengar, M. Thomson, QUIC: A UDP-Based Multiplexed and Secure Transport, Tech. rep., IETF (2021) internet Draft draft-ietf-quic-transport-34.
[22]
M. Scharf, S. Kiesel, Head-of-line Blocking in TCP and SCTP: Analysis and Measurements, in: IEEE Globecom, IEEE, 2006, pp. 1–5.
[23]
A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al., The QUIC transport protocol: Design and Internet-scale Deployment, in: Proceedings of the conference of the ACM special interest group on data communication, 2017, pp. 183–196.
[24]
J. Rüth, K. Wolsing, K. Wehrle, O. Hohlfeld, Perceiving QUIC: Do users notice or even care?, in: Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies, 2019, pp. 144–150.
[25]
K. Wolsing, J. Rüth, K. Wehrle, O. Hohlfeld, A performance perspective on web optimized protocol stacks: TCP+TLS+vs, in: Proceedings of the Applied Networking Research Workshop, 2019, pp. 1–7.
[26]
Y. Yu, M. Xu, Y. Yang, When QUIC meets TCP: An experimental study, in: IEEE Intl Performance Computing and Communications Conf, 2017, pp. 1–8.
[27]
P. Biswal, O. Gnawali, Does QUIC make the web faster?, in: IEEE Global Communications Conference, IEEE, 2016, pp. 1–6.
[28]
S.K. Lee, M. Bae, H. Kim, Future of iot networks: A survey, Applied Sciences 7 (10) (2017) 1072.
[29]
A. Ayadi, D. Ros, L. Toutain, TCP header compression for 6LoWPAN, work in progress, IETF, internet Draft draft-aayadi-olowpan-tcphc-00 (2010).
[30]
A. Ayadi, P. Maillé, D. Ros, L. Toutain, T. Zheng, Implementation and evaluation of a TCP header compression for 6LoWPAN, in: International Wireless Communications and Mobile Computing Conference, IEEE, 2011, pp. 1359–1364.
[31]
C. Gomez, A. Arcia-Moret, J. Crowcroft, TCP in the Internet of Things: from ostracism to prominence, IEEE Internet Computing 22 (1) (2018) 29–41.
[32]
A. Betzler, C. Gomez, I. Demirkol, J. Paradells, CoAP congestion control for the internet of things, IEEE Communications Magazine 54 (7) (2016) 154–160.
[33]
A. Ford, C. Raiciu, M. Handley, O. Bonaventure, C. Paasch, TCP Extensions for Multipath Operation with Multiple Addresses, RFC 8684, RFC Editor (03 2020).
[34]
C. Partridge, S. Pink, A faster UDP, IEEE/ACM Transactions on Networking 1 (1993) 429–439.
[35]
T. Bova, T. Krivoruchka, Reliable UDP Protocol, Tech. rep., IETF, iETF Internet Draft draft-ietf-sigtran-reliable-udp-00.txt (1991).
[36]
L.T. Le, G. Kuthethoor, H. C., et al., Reliable User Datagram Protocol for Airborne Network, Military Communications Conference 1 (2009) 1–6.
[37]
W. Long, W. Zhenkai, Performance analysis of reliable dynamic buffer UDP over wireless networks, 2nd Int, in: Conf on Computer Modelling & Simulation - ICCMS’10 1 (22-24), 2010, pp. 114–117.
[38]
Y. Gu, R.L. Grossman, UDT: UDP-based Data Transfer for High-Speed Wide Area Networks, Computer Networks 51 (7) (2007).
[39]
Z. Yue, Y. Ren, J. Li, Performance evaluation of UDP-based high-speed transport protocols, in: 2nd International Conference on Software Engineering and Service Science, IEEE, 2011, pp. 69–73.
[40]
M.R. Meiss, Tsunami: A high-speed rate-controlled protocol for file transfer, Indiana University, 2004.
[41]
B. Eckart, X. He, Q. Wu, Performance adaptive UDP for high-speed bulk data transfer over dedicated links, in: Intl Symposium on Parallel and Distributed Processing, IEEE, 2008, pp. 1–10.
[42]
M. Masirap, M.H. Amaran, Y.M. Yussof, R.A. Rahman, H. Hashim, Evaluation of reliable UDP-based transport protocols for Internet of Things (IoT), 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE) (2016) 200–205.
[43]
F. Yunus, N.-S.N. Ismail, H.S.G. S., et al., Proposed Transport Protocol for Reliable Data Transfer in Wireless Sensor Network (WSN), in: International Conference on Modeling Simulation and Applied Optimization, IEEE, 2011, pp. 1–7.
[44]
P. Kumar, B. Dezfouli, Implementation and analysis of QUIC for MQTT, Computer Networks 150 (2019) 28–45.
[45]
F. Fernández, M. Zverev, P.G. al., And QUIC meets IoT: performance assessment of MQTT over QUIC, in: 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), IEEE, 2020, pp. 1–6.
[46]
R. Herrero, Analysis of QUIC Transported CoAP, SN Computer Science 2 (2) (2021) 1–11.

Cited By

View all
  • (2024)Analysis of land use and land cover transpose using remote sensing and GIS approachProcedia Computer Science10.1016/j.procs.2024.05.015236:C(144-151)Online publication date: 24-Jul-2024

Index Terms

  1. Transport in the IP-based Internet of Things: status report
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Procedia Computer Science
        Procedia Computer Science  Volume 224, Issue C
        2023
        592 pages
        ISSN:1877-0509
        EISSN:1877-0509
        Issue’s Table of Contents

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 January 2023

        Author Tags

        1. Internet of Things
        2. IoT
        3. transport protocol

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 13 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Analysis of land use and land cover transpose using remote sensing and GIS approachProcedia Computer Science10.1016/j.procs.2024.05.015236:C(144-151)Online publication date: 24-Jul-2024

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media