Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

Published: 01 June 2008 Publication History

Abstract

We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from 2Nlog"2N+O(N) to 179Nlog"2N+O(N) for a power-of-two transform size N. Furthermore, we show that an additional N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split-radix algorithm). The improved algorithms for the DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.

References

[1]
Johnson, S.G. and Frigo, M., A modified split-radix FFT with fewer arithmetic operations. IEEE Trans. Signal Process. v55 i1. 111-119.
[2]
Kamar, I. and Elcherif, Y., Conjugate pair fast Fourier transform. Electron. Lett. v25 i5. 324-325.
[3]
Gopinath, R.A., Comment: conjugate pair fast Fourier transform. Electron. Lett. v25 i16. 1084
[4]
Qian, H.-S. and Zhao, Z.-J., Comment: conjugate pair fast Fourier transform. Electron. Lett. v26 i8. 541-542.
[5]
Krot, A.M. and Minervina, H.B., Comment: conjugate pair fast Fourier transform. Electron. Lett. v28 i12. 1143-1144.
[6]
Vetterli, M. and Nussbaumer, H.J., Simple FFT and DCT algorithms with reduced number of operations. Signal Processing. v6 i4. 267-278.
[7]
Duhamel, P., Implementation of "split-radix" FFT algorithms for complex, real, and real-symmetric data. IEEE Trans. Acoust. Speech Signal Process. v34 i2. 285-295.
[8]
Duhamel, P. and Vetterli, M., Fast Fourier transforms: a tutorial review and a state of the art. Signal Processing. v19. 259-299.
[9]
R. Vuduc, J. Demmel, Code generators for automatic tuning of numerical kernels: experiences with FFTW, in: Proceedings of the Semantics, Application, and Implementation of Code Generators Workshop, Montreal, September 2000.
[10]
Frigo, M. and Johnson, S.G., The design and implementation of FFTW3. Proc. IEEE. v93 i2. 216-231.
[11]
Wang, Z., A fast algorithm for the discrete sine transform implemented by the fast cosine transform. IEEE Trans. Acoust. Speech Signal Process. v30 i5. 814-815.
[12]
Chan, S.C. and Ho, K.L., Direct methods for computing discrete sinusoidal transforms. IEE Proc. F. v137 i6. 433-442.
[13]
Lee, P. and Huang, F.-Y., Restructured recursive DCT and DST algorithms. IEEE Trans. Signal Process. v42 i7. 1600-1609.
[14]
Yavne, R., An economical method for calculating the discrete Fourier transform. In: Proceedings of the AFIPS Fall Joint Computer Conference, vol. 33. pp. 115-125.
[15]
Duhamel, P. and Hollmann, H., Split-radix FFT algorithm. Electron. Lett. v20 i1. 14-16.
[16]
Martens, J.B., Recursive cyclotomic factorization-a new algorithm for calculating the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. v32 i4. 750-761.
[17]
Lundy, T. and Van Buskirk, J., A new matrix approach to real FFTs and convolutions of length 2k. Computing. v80 i1. 23-45.
[18]
Lee, B.G., A new algorithm to compute the discrete cosine transform. IEEE Trans. Acoust. Speech Signal Process. v32 i6. 1243-1245.
[19]
Wang, Z., On computing the discrete Fourier and cosine transforms. IEEE Trans. Acoust. Speech Signal Process. v33 i4. 1341-1344.
[20]
Suehiro, N. and Hatori, M., Fast algorithms for the DFT and other sinusoidal transforms. IEEE Trans. Acoust. Speech Signal Process. v34 i3. 642-644.
[21]
Hou, H.S., A fast algorithm for computing the discrete cosine transform. IEEE Trans. Acoust. Speech Signal Process. v35 i10. 1455-1461.
[22]
Arguello, F. and Zapata, E.L., Fast cosine transform based on the successive doubling method. Electronic Lett. v26 i19. 1616-1618.
[23]
Kok, C.W., Fast algorithm for computing discrete cosine transform. IEEE Trans. Signal Process. v45 i3. 757-760.
[24]
Takala, J., Akopian, D., Astola, J. and Saarinen, J., Constant geometry algorithm for discrete cosine transform. IEEE Trans. Signal Process. v48 i6. 1840-1843.
[25]
Püschel, M. and Moura, J.M.F., The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J.Comput. v32 i5. 1280-1316.
[26]
M. Püschel, Cooley-Tukey FFT like algorithms for the DCT, in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, Hong Kong, April 2003, pp. 501-504.
[27]
Ahmed, N., Natarajan, T. and Rao, K.R., Discrete cosine transform. IEEE Trans. Comput. v23 i1. 90-93.
[28]
Haralick, R.M., A storage efficient way to implement the discrete cosine transform. IEEE Trans. Comput. v25. 764-765.
[29]
Chen, W.-H., Smith, C.H. and Fralick, S.C., A fast computational algorithm for the discrete cosine transform. IEEE Trans. Comm. v25 i9. 1004-1009.
[30]
Narasimha, M.J. and Peterson, A.M., On the computation of the discrete cosine transform. IEEE Trans. Comm. v26 i6. 934-936.
[31]
Tseng, B.D. and Miller, W.C., On computing the discrete cosine transform. IEEE Trans. Comput. v27 i10. 966-968.
[32]
Yaroslavskii, L.P., Shifted discrete Fourier transforms. Problems of Inform. Transmission. v15 i4. 324-327.
[33]
Makhoul, J., A fast cosine transform in one and two dimensions. IEEE Trans. Acoust. Speech Signal Process. v28 i1. 27-34.
[34]
Malvar, H.S., Fast computation of the discrete cosine transform and the discrete Hartley transform. IEEE Trans. Acoust. Speech Signal Process. v35 i10. 1484-1485.
[35]
Li, W., A new algorithm to compute the DCT and its inverse. IEEE Trans. Signal Process. v39 i6. 1305-1313.
[36]
Steidl, G. and Tasche, M., A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms. Math. Comput. v56 i193. 281-296.
[37]
Feig, E. and Winograd, S., On the multiplicative complexity of discrete cosine transforms. IEEE Trans. Inform. Theory. v38 i4. 1387-1391.
[38]
Astola, J. and Akopian, D., Architecture-oriented regular algorithms for discrete sine and cosine transforms. IEEE Trans. Signal Process. v47 i4. 1109-1124.
[39]
Guo, Z., Shi, B. and Wang, N., Two new algorithms based on product system for discrete cosine transform. Signal Processing. v81. 1899-1908.
[40]
Plonka, G. and Tasche, M., Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. v394. 309-345.
[41]
Frigo, M., A fast Fourier transform compiler. In: Proceedings of the ACM SIGPLAN'99 Conference on Programming Language Design and Implementation (PLDI), vol. 34. Atlanta, GA, New York, ACM. pp. 169-180.
[42]
Arai, Y., Agui, T. and Nakajima, M., A fast DCT-SQ scheme for images. Trans. IEICE. v71 i11. 1095-1097.
[43]
Pennebaker, W.B. and Mitchell, J.L., JPEG Still Image Data Compression Standard. 1993. Van Nostrand Reinhold, New York.
[44]
Swarztrauber, P.N., Vectorizing the FFTs. In: Rodrigue, G. (Ed.), Parallel Computations, pp. 51-83.
[45]
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes in C: The Art of Scientific Computing. 1992. second ed. Cambridge University Press, New York, NY.
[46]
van Loan, C., Computational Frameworks for the Fast Fourier Transform. 1992. SIAM, Philadelphia, PA.
[47]
Rao, K.R. and Yip, P., Cosine Transform: Algorithms Advantages Applications. 1990. Academic Press, Boston, MA.
[48]
Sorensen, H.V., Jones, D.L., Heideman, M.T. and Burrus, C.S., Real-valued fast Fourier transform algorithms. IEEE Trans. Acoust. Speech Signal Process. v35 i6. 849-863.
[49]
Gentleman, W.M. and Sande, G., Fast Fourier transforms-for fun and profit. Proc. AFIPS. v29. 563-578.
[50]
Schatzman, J.C., Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. v17 i5. 1150-1166.
[51]
Tasche, M. and Zeuner, H., . In: Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, Boca Raton, FL. pp. 357-406.
[52]
Crochiere, R.E. and Oppenheim, A.V., Analysis of linear digital networks. Proc. IEEE. v63 i4. 581-595.
[53]
X. Shao, S.G. Johnson, Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations, Signal Processing (2008), in press.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Signal Processing
Signal Processing  Volume 88, Issue 6
June, 2008
314 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 June 2008

Author Tags

  1. Arithmetic complexity
  2. Discrete cosine transform
  3. Fast Fourier transform

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)MASS: distance profile of a query over a time seriesData Mining and Knowledge Discovery10.1007/s10618-024-01005-238:3(1466-1492)Online publication date: 1-May-2024
  • (2023)DCT-Former: Efficient Self-Attention with Discrete Cosine TransformJournal of Scientific Computing10.1007/s10915-023-02125-594:3Online publication date: 7-Feb-2023
  • (2022)An Efficient DCT-II Based Harmonic Wavelet Transform for Time-Frequency AnalysisJournal of Signal Processing Systems10.1007/s11265-022-01805-z94:12(1381-1394)Online publication date: 1-Dec-2022
  • (2022)A Fast Discrete Transform for a Class of Simultaneously Diagonalizable MatricesComputational Science and Its Applications – ICCSA 202210.1007/978-3-031-10522-7_16(214-231)Online publication date: 4-Jul-2022
  • (2019)Realization of Second-Order Structure of Recursive Algorithm for Discrete Cosine TransformCircuits, Systems, and Signal Processing10.1007/s00034-018-0885-638:2(791-804)Online publication date: 1-Feb-2019
  • (2018)Blind Impulse Estimation and Removal Using Sparse Signal Decomposition Framework for OFDM SystemsCircuits, Systems, and Signal Processing10.1007/s00034-017-0573-y37:2(847-861)Online publication date: 1-Feb-2018
  • (2011)Novel VLSI algorithm and architecture with good quantization properties for a high-throughput area efficient systolic array implementation of DCTEURASIP Journal on Advances in Signal Processing10.1155/2011/6390432011(1-14)Online publication date: 1-Jan-2011
  • (2009)Real-time fluid simulation using discrete sine/cosine transformsProceedings of the 2009 symposium on Interactive 3D graphics and games10.1145/1507149.1507165(99-106)Online publication date: 27-Feb-2009

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media