Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Review: A review of novelty detection

Published: 01 June 2014 Publication History

Abstract

Novelty detection is the task of classifying test data that differ in some respect from the data that are available during training. This may be seen as ''one-class classification'', in which a model is constructed to describe ''normal'' training data. The novelty detection approach is typically used when the quantity of available ''abnormal'' data is insufficient to construct explicit models for non-normal classes. Application includes inference in datasets from critical systems, where the quantity of available normal data is very large, such that ''normality'' may be accurately modelled. In this review we aim to provide an updated and structured investigation of novelty detection research papers that have appeared in the machine learning literature during the last decade.

References

[1]
L. Tarassenko, P. Hayton, N. Cerneaz, M. Brady, Novelty detection for the identification of masses in mammograms, in: Proceedings of the 4th International Conference on Artificial Neural Networks, IET, 1995, pp. 442-447.
[2]
Quinn, J. and Williams, C., Known unknowns: novelty detection in condition monitoring. . Pattern Recognit. Image Anal. v4477. 1-6.
[3]
L. Clifton, D. Clifton, P. Watkinson, L. Tarassenko, Identification of patient deterioration in vital-sign data using one-class support vector machines, in: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2011, pp. 125-131.
[4]
Tarassenko, L., Clifton, D., Bannister, P., King, S. and King, D., Novelty Detection. 2009. John Wiley & Sons, Ltd.
[5]
Surace, C. and Worden, K., Novelty detection in a changing environment: a negative selection approach. . Mech. Syst. Signal Process. v24 i4. 1114-1128.
[6]
Patcha, A. and Park, J., An overview of anomaly detection techniques: existing solutions and latest technological trends. . Comput. Netw. v51 i12. 3448-3470.
[7]
A review of anomaly based intrusion detection systems. Int. J. Comput. Appl. v28 i7. 26-35.
[8]
C. Diehl, J. Hampshire, Real-time object classification and novelty detection for collaborative video surveillance, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN'02, 2002, vol. 3, pp. 2620-2625.
[9]
Markou, M. and Singh, S., A neural network-based novelty detector for image sequence analysis. IEEE Trans. Pattern Anal. Mach. Intell. v28 i10. 1664-1677.
[10]
Vieira Neto, H. and Nehmzow, U., Real-time automated visual inspection using mobile robots. J. Intell. Robotic Syst. v49 i3. 293-307.
[11]
Sofman, B., Neuman, B., Stentz, A. and Bagnell, J., Anytime online novelty and change detection for mobile robots. J. Field Robot. v28 i4. 589-618.
[12]
Outlier detection techniques for wireless sensor networks: a survey. . IEEE Commun. Surv. Tutor. v12 i2. 159-170.
[13]
H. Dutta, C. Giannella, K. Borne, H. Kargupta, Distributed top-k outlier detection from astronomy catalogs using the DEMAC system, in: Proceedings of the 7th SIAM International Conference on Data Mining, IEEE, 2007.
[14]
H. Escalante, A comparison of outlier detection algorithms for machine learning, in: Proceedings of the International Conference on Communications in Computing, Citeseer, 2005.
[15]
S. Basu, M. Bilenko, R. Mooney, A probabilistic framework for semi-supervised clustering, in: Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2004, pp. 59-68.
[16]
Barber, D., Bayesian Reasoning and Machine Learning. 2012. Cambridge University Press.
[17]
C. Sammut, G. Webb, Encyclopedia of Machine Learning. Springer, 2011. Springer reference.
[18]
M. Moya, M. Koch, L. Hostetler, One-class classifier networks for target recognition applications, in: Proceedings of the World Congress on Neural Networks, International Neural Network Society, 1993, pp. 797-801.
[19]
He, H. and Garcia, E., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. v21 i9. 1263-1284.
[20]
Lee, H.-J. and Cho, S., The novelty detection approach for different degrees of class imbalance. In: King, I., Wang, J., Chan, L.-W., Wang, D. (Eds.), Neural Information Processing, Lecture Notes in Computer Science, vol. 4233. Springer, Berlin/Heidelberg. pp. 21-30.
[21]
C. Bishop, Novelty detection and neural network validation, in: Proceedings of the IEEE Conference on Vision, Image and Signal Processing, vol. 141, IET, 1994, pp. 217-222.
[22]
Ritter, G. and Gallegos, M., Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognit. Lett. v18 i6. 525-539.
[23]
I. Merriam-Webster, Merriam-webster - an encyclopedia britannica company, May 2012. URL {http://www.merriam-webster.com/dictionary/novel/}.
[24]
Chandola, V., Banerjee, A. and Kumar, V., Anomaly detection: a survey. . ACM Comput. Surv. (CSUR). v41 i3. 1-58.
[25]
Barnett, V. and Lewis, T., Outliers in Statistical Data, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. . 1994. Wiley and Sons.
[26]
Markou, M. and Singh, S., Novelty detection: a review - part 1: statistical approaches. . Signal Process. v83 i12. 2481-2497.
[27]
Markou, M. and Singh, S., Novelty detection: a review - part 2: neural network based approaches. . Signal Process. v83 i12. 2499-2521.
[28]
Marsland, S., Novelty detection in learning systems. Neural Comput. Surv. v3. 157-195.
[29]
A survey of outlier detection methodologies. Artif. Intell. Rev. v22 i2. 85-126.
[30]
A comprehensive survey of numeric and symbolic outlier mining techniques. Intell. Data Anal. v10 i6. 521-538.
[31]
Z. Bakar, R. Mohemad, A. Ahmad, M. Deris, A comparative study for outlier detection techniques in data mining, in: Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, IEEE, 2006, pp. 1-6.
[32]
Khan, S. and Madden, M., A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (Eds.), Artificial Intelligence and Cognitive Science, Lecture Notes in Computer Science, vol. 6206. Springer, Berlin/Heidelberg. pp. 188-197.
[33]
Duda, R.O., Hart, P.E. and Stork, D.G., Pattern Classification. 2001. Wiley, NY, USA.
[34]
Bishop, C., . 2006. Pattern Recognition and Machine Learning, 2006.Springer, New York.
[35]
Analysis of time series novelty detection strategies for synthetic and real data. Neural Process. Lett. v30 i1. 1-17.
[36]
V. Chandola, A. Banerjee, V. Kumar, Outlier Detection: A Survey, Technical Report 07-017, University of Minnesota, 2007.
[37]
J. Kittler, W. Christmas, T. de Campos, D. Windridge, F. Yan, J. Illingworth, M. Osman, Domain anomaly detection in machine perception: a system architecture and taxonomy, IEEE Trans. Pattern Anal. Mach. Intell. 99 (2013) 1.
[38]
Bartkowiak, A.M., Anomaly, novelty, one-class classification: a comprehensive introduction. . Int. J. Comput. Inf. Syst. Ind. Manage. Appl. v3. 61-71.
[39]
Y. Gatsoulis, E. Kerr, J. Condell, N. Siddique, T. McGinnity, Novelty detection for cumulative learning, in: Proceedings of the Conference on Towards Autonomous Robotic Systems, 2010, pp. 62-67.
[40]
E. Kerr, Y. Gatsoulis, N.H. Siddique, J.V. Condell, T.M. McGinnity, Brief overview of novelty detection methods for robotic cumulative learning, in: Proceedings of the 21st National Conference on Artificial Intelligence and Cognitive Science, 2010, pp. 171-180.
[41]
D. Miljkovic, Review of novelty detection methods, in: Proceedings of the 33rd International Convention (MIPRO), IEEE, 2010, pp. 593-598.
[42]
Helali, R., Data mining based network intrusion detection system: a survey. . Novel Algoritm. Tech. Telecommun. Netw. 501-505.
[43]
Grubbs, F.E., Procedures for detecting outlying observations in samples. Technometrics. v11 i1. 1-21.
[44]
C. Aggarwal, P. Yu, Outlier detection with uncertain data, in: Proceedings of the SIAM International Conference on Data Mining, 2008, pp. 483-493.
[45]
Solberg, H. and Lahti, A., Detection of outliers in reference distributions: performance of Horn's algorithm. . Clin. Chem. v51 i12. 2326-2332.
[46]
Chow, C., On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory. v16 i1. 41-46.
[47]
Scott, D.W., Frontmatter. 2008. John Wiley & Sons, Inc.
[48]
D. Filev, F. Tseng, Real time novelty detection modeling for machine health prognostics, in: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), IEEE, 2006, pp. 529-534.
[49]
D. Filev, F. Tseng, Novelty detection based machine health prognostics, in: International Symposium on Evolving Fuzzy Systems, 2006, pp. 193-199.
[50]
A. Flexer, E. Pampalk, G. Widmer, Novelty detection based on spectral similarity of songs, in: Proceedings of 6th International Conference on Music Information Retrieval, 2005, pp. 260-263.
[51]
J. Ilonen, P. Paalanen, J. Kamarainen, H. Kalviainen, Gaussian mixture pdf in one-class classification: computing and utilizing confidence values, in: Proceedings of the 18th International Conference on Pattern Recognition (ICPR), vol. 2, IEEE, 2006, pp. 577-580.
[52]
J. Larsen, Distribution of the Density of a Gaussian Mixture, Technical Report, Informatics and Mathematical Modelling, DTU, 2003.
[53]
Paalanen, P., Kamarainen, J., Ilonen, J. and Kälviäinen, H., Feature representation and discrimination based on Gaussian mixture model probability densities - practices and algorithms. Pattern Recognit. v39 i7. 1346-1358.
[54]
N. Pontoppidan, J. Larsen, Unsupervised condition change detection in large diesel engines, in: Proceedings of the IEEE 13th Workshop on Neural Networks for Signal Processing, NNSP'03, IEEE, 2003, pp. 565-574.
[55]
Song, X., Wu, M., Jermaine, C. and Ranka, S., Conditional anomaly detection. IEEE Trans. Knowl. Data Eng. v19 i5. 631-645.
[56]
Zorriassatine, F., Al-Habaibeh, A., Parkin, R., Jackson, M. and Coy, J., Novelty detection for practical pattern recognition in condition monitoring of multivariate processes: a case study. . Int. J. Adv. Manuf. Technol. v25 i9. 954-963.
[57]
Clifton, D., Clifton, L., Bannister, P. and Tarassenko, L., Automated novelty detection in industrial systems. Adv. Comput. Intell. Ind. Syst. v116. 269-296.
[58]
D. Clifton, S. Hugueny, L. Tarassenko, A comparison of approaches to multivariate extreme value theory for novelty detection, in: Proceedings of the IEEE/SP 15th Workshop on Statistical Signal Processing, IEEE, 2009, pp. 13-16.
[59]
Clifton, D., Hugueny, S. and Tarassenko, L., Novelty detection with multivariate extreme value statistics. J. Signal Process. Syst. v65 i3. 371-389.
[60]
D. Clifton, S. Hugueny, L. Tarassenko, Pinning the tail on the distribution: a multivariate extension to the generalised Pareto distribution, in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2011, pp. 1-6.
[61]
Clifton, D., Clifton, L., Hugueny, S., Wong, D. and Tarassenko, L., An extreme function theory for novelty detection. IEEE J. Sel. Top. Signal Process. v7 i1. 28-37.
[62]
A. Hazan, J. Lacaille, K. Madani, Extreme value statistics for vibration spectra outlier detection, in: Proceedings of the 9th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, 2012.
[63]
S. Hugueny, D. Clifton, L. Tarassenko, Novelty detection with multivariate extreme value theory, part II: an analytical approach to unimodal estimation, in: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, IEEE, 2009, pp. 1-6.
[64]
S. Roberts, Novelty detection using extreme value statistics, in: Proceedings of the IEEE Conference on Vision, Image and Signal Processing 146 (3) (1999) 124-129.
[65]
S. Roberts, Extreme value statistics for novelty detection in biomedical data processing, in: Proceedings of the IEEE Conference on Science, Measurement and Technology, vol. 147, IET, 2000, pp. 363-367.
[66]
Sohn, H., Allen, D.W., Worden, K. and Farrar, C.R., Structural damage classification using extreme value statistics. J. Dyn. Syst. Meas. Control. v127 i1. 125-132.
[67]
S. Sundaram, D. Clifton, I. Strachan, L. Tarassenko, S. King, Aircraft engine health monitoring using density modelling and extreme value statistics, in: Proceedings of the 6th International Conference on Condition Monitoring and Machine Failure Prevention Technologies, 2009.
[68]
R. Gwadera, M. Atallah, W. Szpankowski, Markov models for identification of significant episodes, in: Proceedings of 5th SIAM International Conference on Data Mining, 2005, pp. 404-414.
[69]
Gwadera, R., Atallah, M. and Szpankowski, W., Reliable detection of episodes in event sequences. Knowl. Inf. Syst. v7 i4. 415-437.
[70]
A. Ihler, J. Hutchins, P. Smyth, Adaptive event detection with time-varying poisson processes, in: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2006, pp. 207-216.
[71]
D. Janakiram, V. Adi Mallikarjuna Reddy, A. Phani Kumar, Outlier detection in wireless sensor networks using Bayesian belief networks, in: Proceedings of the 1st International Conference on Communication System Software and Middleware (Comsware), IEEE, 2006, pp. 1-6.
[72]
H.-J. Lee, S. Roberts, On-line novelty detection using the Kalman filter and extreme value theory, in: Proceedings of the 19th International Conference on Pattern Recognition (ICPR), 2008, pp. 1-4.
[73]
Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings. Med. Biol. Eng. Comput. v40 i4. 447-461.
[74]
P. McSharry, Detection of dynamical transitions in biomedical signals using nonlinear methods, in: Knowledge-Based Intelligent Information and Engineering Systems, Springer, 2004, pp. 483-490.
[75]
Ntalampiras, S., Potamitis, I. and Fakotakis, N., Probabilistic novelty detection for acoustic surveillance under real-world conditions. IEEE Trans. Multimed. v13 i4. 713-719.
[76]
Pinto, A., Pronobis, A. and Reis, L., Novelty detection using graphical models for semantic room classification. Prog. Artif. Intell. v7026. 326-339.
[77]
Qiao, Y., Xin, X., Bin, Y. and Ge, S., Anomaly intrusion detection method based on HMM. Electron. Lett. v38 i13. 663-664.
[78]
Quinn, J., Williams, C. and McIntosh, N., Factorial switching linear dynamical systems applied to physiological condition monitoring. IEEE Trans. Pattern Anal. Mach. Intell. v31 i9. 1537-1551.
[79]
C. Siaterlis, B. Maglaris, Towards multisensor data fusion for dos detection, in: Proceedings of the ACM Symposium on Applied Computing, SAC '04, ACM, New York, NY, USA, 2004, pp. 439-446.
[80]
Williams, C., Quinn, J. and McIntosh, N., Factorial switching Kalman filters for condition monitoring in neonatal intensive care. Neural Inf. Process. 1513-1520.
[81]
W. Wong, A. Moore, G. Cooper, M. Wagner, Rule-based anomaly pattern detection for detecting disease outbreaks, in: Proceedings of the National Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London, AAAI Press; MIT Press; 1999, 2002, pp. 217-223.
[82]
W. Wong, A. Moore, G. Cooper, M. Wagner, Bayesian network anomaly pattern detection for disease outbreaks, in: Proceedings of the 20th International Conference on Machine Learning, vol. 20, AAAI Press, 2003, pp. 808-815.
[83]
Yeung, D.-Y. and Ding, Y., Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognit. v36 i1. 229-243.
[84]
X. Zhang, P. Fan, Z. Zhu, A new anomaly detection method based on hierarchical HMM, in: Proceedings of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies, IEEE, 2003, pp. 249-252.
[85]
An approach for fuzzy rule-base adaptation using on-line clustering. Int. J. Approx. Reason. v35 i3. 275-289.
[86]
Bengio, Y. and Monperrus, M., Non-local manifold tangent learning. Adv. Neural Inf. Process. Syst. v17. 129-136.
[87]
Bengio, Y., Larochelle, H. and Vincent, P., Non-local manifold parzen windows. Adv. Neural Inf. Process. Syst. v18. 115-123.
[88]
D. Erdogmus, R. Jenssen, Y. Rao, J. Principe, Multivariate density estimation with optimal marginal parzen density estimation and gaussianization, in: Proceedings of the 14th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, IEEE, 2004, pp. 73-82.
[89]
Kapoor, A., Grauman, K., Urtasun, R. and Darrell, T., Gaussian processes for object categorization. Int. J. Comput. Vis. v88 i2. 169-188.
[90]
M. Kemmler, E. Rodner, J. Denzler, One-class classification with Gaussian processes, in: Asian Conference on Computer Vision (ACCV), vol. 6493, 2011, pp. 489-500.
[91]
Kim, H. and Lee, J., Pseudo-density estimation for clustering with Gaussian processes. Adv. Neural Netw. (ISNN). v3971. 1238-1243.
[92]
R. Ramezani, P. Angelov, X. Zhou, A fast approach to novelty detection in video streams using recursive density estimation, in: Proceedings of the 4th International IEEE Conference Intelligent Systems, IS'08, IEEE, vol. 2, 2008, pp. 14-22.
[93]
S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, D. Gunopulos, Online outlier detection in sensor data using non-parametric models, in: Proceedings of the 32nd International Conference on Very Large Databases, VLDB Endowment, 2006, pp. 187-198.
[94]
L. Tarassenko, A. Hann, A. Patterson, E. Braithwaite, K. Davidson, V. Barber, D. Young, Biosign¿: multi-parameter monitoring for early warning of patient deterioration, in: Proceedings of the 3rd IEE International Seminar on Medical Applications of Signal Processing, IET, 2005, pp. 71-76.
[95]
Integrated monitoring and analysis for early warning of patient deterioration. Br. J. Anaesth. v97 i1. 64-68.
[96]
Vincent, P. and Bengio, Y., Manifold parzen windows. Adv. Neural Inf. Process. Syst. v15. 825-832.
[97]
D. Yeung, C. Chow, Parzen-window network intrusion detectors, in: Proceedings of the 16th International Conference on Pattern Recognition, vol. 4, IEEE, 2002, pp. 385-388.
[98]
D. Dasgupta, N. Majumdar, Anomaly detection in multidimensional data using negative selection algorithm, in: Proceedings of the Congress on Evolutionary Computation (CEC), vol. 2, IEEE, 2002, pp. 1039-1044.
[99]
Esponda, F., Forrest, S. and Helman, P., A formal framework for positive and negative detection schemes. IEEE Trans. Syst. Man Cybern. Part B. v34 i1. 357-373.
[100]
J. Gómez, F. González, D. Dasgupta, An immuno-fuzzy approach to anomaly detection, in: 12th IEEE International Conference on Fuzzy Systems (FUZZ '03), vol. 2, 2003, pp. 1219-1224.
[101]
González, F. and Dasgupta, D., Anomaly detection using real-valued negative selection. Genet. Program. Evolvable Mach. v4 i4. 383-403.
[102]
Taylor, D. and Corne, D., An investigation of the negative selection algorithm for fault detection in refrigeration systems. Artif. Immune Syst. v2787. 34-45.
[103]
McLachlan, G.J. and Basford, K.E., . 1988. Mixture Models, 1988.Marcel Dekker, New York.
[104]
Agusta, Y. and Dowe, D., Unsupervised learning of gamma mixture models using minimum message length. In: Hamza, M.H. (Ed.), Proceedings of the 3rd IASTED Conference on Artificial Intelligence and Applications, pp. 457-462.
[105]
Mayrose, I., Friedman, N. and Pupko, T., A gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics. v21 i2. 151-158.
[106]
Modelling nonlinear count time series with local mixtures of poisson autoregressions. Comput. Stat. Data Anal. v51 i11. 5266-5294.
[107]
Svensén, M. and Bishop, C., Robust Bayesian mixture modelling. Neurocomputing. v64. 235-252.
[108]
A. Stranjak, P. Dutta, M. Ebden, A. Rogers, P. Vytelingum, A multi-agent simulation system for prediction and scheduling of aero engine overhaul, in: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Industrial Track, International Foundation for Autonomous Agents and Multiagent Systems, 2008, pp. 81-88.
[109]
Statistical independence and novelty detection with information preserving nonlinear maps. Neural Comput. v8 i2. 260-269.
[110]
A. Nairac, T. Corbett-Clark, R. Ripley, N. Townsend, L. Tarassenko, Choosing an appropriate model for novelty detection, in: Proceedings of the 5th International Conference on Artificial Neural Networks, IET, 1997, pp. 117-122.
[111]
Hyndman, R., Computing and graphing highest density regions. Am. Stat. v50 i2. 120-126.
[112]
Pickands, J., Statistical inference using extreme order statistics. Ann. Stat. v3 i1. 119-131.
[113]
Embrechts, P., Klüppelberg, C. and Mikosch, T., . 1997. Modelling Extremal Events for Insurance and Finance, 1997.Springer Verlag.
[114]
R. Fisher, L. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, in: Proceedings of the Cambridge Philosophical Society, vol. 24, Cambridge University Press, 1928, pp. 180-190.
[115]
D. Clifton, L. Tarassenko, N. McGrogan, D. King, S. King, P. Anuzis, Bayesian extreme value statistics for novelty detection in gas-turbine engines, in: Proceedings of the IEEE Aerospace Conference, IEEE, 2008, pp. 1-11.
[116]
Worden, K., Manson, G. and Allman, D., Experimental validation of a structural health monitoring methodology: part i. Novelty detection on a laboratory structure. . J. Sound Vib. v259 i2. 323-343.
[117]
Yamanishi, K., Takeuchi, J., Williams, G. and Milne, P., On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min. Knowl. Discov. v8 i3. 275-300.
[118]
K. Yamanishi, J. Takeuchi, G. Williams, P. Milne, On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms, in: Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2000, pp. 320-324.
[119]
D. Agarwal, An empirical Bayes approach to detect anomalies in dynamic multidimensional arrays, in: Proceedings of the 5th IEEE International Conference on Data Mining, IEEE, 2005, pp. 26-33.
[120]
Agarwal, D., Detecting anomalies in cross-classified streams: a Bayesian approach. . Knowl. Inf. Syst. v11 i1. 29-44.
[121]
Zorriassatine, F., Tannock, J. and O'Brien, C., Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes. Comput. Ind. Eng. v44 i3. 385-408.
[122]
Højen-Sørensen, P., Winther, O. and Hansen, L., Mean-field approaches to independent component analysis. Neural Comput. v14 i4. 889-918.
[123]
Verbeek, J., Vlassis, N. and Kröse, B., Efficient greedy learning of Gaussian mixture models. Neural Comput. v15 i2. 469-485.
[124]
J. Zhang, Z. Ghahramani, Y. Yang, A probabilistic model for online document clustering with application to novelty detection, in: NIPS, 2005.
[125]
Perner, P., Concepts for novelty detection and handling based on a case-based reasoning process scheme. Eng. Appl. Artif. Intell. v22 i1. 86-91.
[126]
Hempstalk, K., Frank, E. and Witten, I., One-class classification by combining density and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K. (Eds.), Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol. 5211. Springer, Berlin/Heidelberg. pp. 505-519.
[127]
D. Chen, M. Meng, Health status detection for patients in physiological monitoring, in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 4921-4924.
[128]
Kanamori, T., Hido, S. and Sugiyama, M., A least-squares approach to direct importance estimation. J. Mach. Learn. Res. v10. 1391-1445.
[129]
Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M. and Kanamori, T., Statistical outlier detection using direct density ratio estimation. Knowl. Inf. Syst. v26 i2. 309-336.
[130]
Sugiyama, M., Suzuki, T. and Kanamori, T., Density ratio estimation: a comprehensive review. . RIMS Kokyuroku. 10-31.
[131]
Hoare, S., Asbridge, D. and Beatty, P., On-line novelty detection for artefact identification in automatic anaesthesia record keeping. Med. Eng. Phys. v24 i10. 673-681.
[132]
Roberts, S. and Tarassenko, L., A probabilistic resource allocating network for novelty detection. Neural Comput. v6 i2. 270-284.
[133]
Galeano, P., Peña, D. and Tsay, R., Outlier detection in multivariate time series by projection pursuit. J. Am. Stat. Assoc. v101 i474. 654-669.
[134]
Chen, D., Shao, X., Hu, B. and Su, Q., Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Anal. Sci. v21 i2. 161-166.
[135]
Detecting outlying samples in microarray data: a critical assessment of the effect of outliers on sample classification. Chem-Bio Informat. v3 i1. 30-45.
[136]
Smyth, P., Markov monitoring with unknown states. IEEE J. Sel. Areas Commun. v12 i9. 1600-1612.
[137]
Ghahramani, Z. and Hinton, G., Variational learning for switching state-space models. Neural Comput. v12 i4. 831-864.
[138]
M. Atallah, W. Szpankowski, R. Gwadera, Detection of significant sets of episodes in event sequences, in: Proceedings of the 4th IEEE International Conference on Data Mining, ICDM'04, IEEE, 2004, pp. 3-10.
[139]
A. Sebyala, T. Olukemi, L. Sacks, Active platform security through intrusion detection using naive Bayesian network for anomaly detection, in: London Communications Symposium, Citeseer, 2002.
[140]
C. Kruegel, G. Vigna, Anomaly detection of web-based attacks, in: Proceedings of the 10th ACM Conference on Computer and Communications Security, ACM, 2003, pp. 251-261.
[141]
C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classification for intrusion detection, in: Proceedings of the 19th Annual Computer Security Applications Conference, IEEE, 2003, pp. 14-23.
[142]
M. Mahoney, P. Chan, Learning nonstationary models of normal network traffic for detecting novel attacks, in: Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2002, pp. 376-385.
[143]
Parzen, E., On estimation of a probability density function and mode. Ann. Math. Stat. v33 i3. 1065-1076.
[144]
A. Frank, A. Asuncion, UCI machine learning repository, 2010.
[145]
Hravnak, M., Edwards, L., Clontz, A., Valenta, C., DeVita, M. and Pinsky, M., Defining the incidence of cardiorespiratory instability in patients in step-down units using an electronic integrated monitoring system. Arch. Internal Med. v168 i12. 1300-1308.
[146]
Angelov, P. and Filev, D., An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B. v34 i1. 484-498.
[147]
R. Adams, I. Murray, D. MacKay, The Gaussian process density sampler, in: Advances in Neural Information Processing Systems (NIPS) 21, 2009, pp. 9-16.
[148]
Lorden, G., Procedures for reacting to a change in distribution. Ann. Math. Stat. v42 i6. 1897-1908.
[149]
Basseville, M. and Nikiforov, I.V., . 1993. Detection of Abrupt Changes, 1993.Prentice Hall, Englewood Cliffs.
[150]
Reeves, J., Chen, J., Wang, X.L., Lund, R. and Lu, Q.Q., A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. v46 i6. 900-915.
[151]
Peng, T., Leckie, C. and Ramamohanarao, K., Information sharing for distributed intrusion detection systems. J. Netw. Comput. Appl. v30 i3. 877-899.
[152]
Van Phuong, T., Hung, L., Cho, S., Lee, Y. and Lee, S., An anomaly detection algorithm for detecting attacks in wireless sensor networks. Intell. Secur. Informat. v3975. 735-736.
[153]
Tartakovsky, A.G. and Moustakides, G.V., State-of-the-art in Bayesian changepoint detection. Seq. Anal. v29 i2. 125-145.
[154]
Chen, J. and Gupta, A.K., Parametric Statistical Change Point Analysis: with Applications to Genetics. . 2012. Birkhäuser Boston, Medicine, and Finance, Boston.
[155]
S. Forrest, A. Perelson, L. Allen, R. Cherukuri, Self-nonself discrimination in a computer, in: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, IEEE, 1994, pp. 202-212.
[156]
F. Angiulli, C. Pizzuti, Fast outlier detection in high dimensional spaces, in: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD '02, Springer-Verlag, London, UK, 2002, pp. 15-26.
[157]
S. Bay, M. Schwabacher, Mining distance-based outliers in near linear time with randomization and a simple pruning rule, in: Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2003, pp. 29-38.
[158]
S. Boriah, V. Chandola, V. Kumar, Similarity measures for categorical data: a comparative evaluation, in: Proceedings of the 8th SIAM International Conference on Data Mining, 2008, pp. 243-254.
[159]
M. Breunig, H. Kriegel, R. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, vol. 29, ACM, 2000, pp. 93-104.
[160]
V. Chandola, S. Boriah, V. Kumar, Understanding Categorical Similarity Measures for Outlier Detection, Technical Report 08-008, University of Minnesota, 2008.
[161]
Chawla, S. and Sun, P., SLOM: a new measure for local spatial outliers. . Knowl. Inf. Syst. v9 i4. 412-429.
[162]
A. Ghoting, M. Otey, S. Parthasarathy, Loaded: link-based outlier and anomaly detection in evolving data sets, in: Proceedings of the 4th IEEE International Conference on Data Mining, ICDM'04, IEEE, 2004, pp. 387-390.
[163]
Ghoting, A., Parthasarathy, S. and Otey, M., Fast mining of distance-based outliers in high-dimensional datasets. Data Min. Knowl. Discov. v16 i3. 349-364.
[164]
V. Hautamaki, I. Karkkainen, P. Franti, Outlier detection using k-nearest neighbour graph, in: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, IEEE, 2004, pp. 430-433.
[165]
Jiang, F., Sui, Y. and Cao, C., Outlier detection using rough set theory. In: Slezak, D., Yao, J., Peters, J., Ziarko, W., Hu, X. (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, vol. 3642. Springer, Berlin Heidelberg. pp. 79-87.
[166]
Y. Kou, C. Lu, D. Chen, Spatial weighted outlier detection, in: Proceedings of the SIAM Conference on Data Mining, 2006.
[167]
Fast distributed outlier detection in mixed-attribute data sets. Data Min. Knowl. Discov. v12 i2. 203-228.
[168]
Palshikar, G., Distance-based outliers in sequences. Distrib. Comput. Internet Technol. v3816. 547-552.
[169]
D. Pokrajac, A. Lazarevic, L. Latecki, Incremental local outlier detection for data streams, in: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2007, pp. 504-515.
[170]
M. Wu, C. Jermaine, Outlier detection by sampling with accuracy guarantees, in: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2006, pp. 767-772.
[171]
Zhang, J. and Wang, H., Detecting outlying subspaces for high-dimensional data: the new task, and performance. . Knowl. Inf. Syst. v10 i3. 333-355.
[172]
D. Barbará, Y. Li, J. Couto, COOLCAT: an entropy-based algorithm for categorical clustering, in: Proceedings of the 11th International Conference on Information and Knowledge Management, ACM, 2002, pp. 582-589.
[173]
D. Barbará, Y. Li, J. Couto, J. Lin, S. Jajodia, Bootstrapping a data mining intrusion detection system, in: Proceedings of the ACM Symposium on Applied Computing, ACM, 2003, pp. 421-425.
[174]
S. Budalakoti, A. Srivastava, R. Akella, E. Turkov, Anomaly Detection in Large Sets of High-Dimensional Symbol Sequences, Technical Report NASA TM-2006-214553, NASA Ames Research Center, 2006.
[175]
Clifton, D., Bannister, P. and Tarassenko, L., Learning shape for jet engine novelty detection. Adv. Neural Netw. (ISNN). v3973. 828-835.
[176]
Clifton, D., Bannister, P. and Tarassenko, L., A framework for novelty detection in jet engine vibration data. Key Eng. Mater. v347. 305-310.
[177]
Filippone, M., Masulli, F. and Rovetta, S., Applying the possibilistic c-means algorithm in kernel-induced spaces. IEEE Trans. Fuzzy Syst. v18 i3. 572-584.
[178]
Discovering cluster-based local outliers. Pattern Recognit. Lett. v24 i9. 1641-1650.
[179]
Kim, D., Kang, P., Cho, S., Lee, H. and Doh, S., Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Syst. Appl. v39 i4. 4075-4083.
[180]
A. Srivastava, B. Zane-Ulman, Discovering recurring anomalies in text reports regarding complex space systems, in: Proceedings of the IEEE Aerospace Conference, IEEE, 2005, pp. 3853-3862.
[181]
A. Srivastava, Enabling the discovery of recurring anomalies in aerospace problem reports using high-dimensional clustering techniques, in: Proceedings of the IEEE Aerospace Conference, IEEE, 2006, pp. 1-17.
[182]
Sun, H., Bao, Y., Zhao, F., Yu, G. and Wang, D., CD-trees: an efficient index structure for outlier detection. . Adv. Web-Age Inf. Manage. v3129. 600-609.
[183]
Z. Syed, M. Saeed, I. Rubinfeld, Identifying high-risk patients without labeled training data: anomaly detection methodologies to predict adverse outcomes, in: AMIA Annual Symposium Proceedings, vol. 2010, American Medical Informatics Association, 2010, pp. 772-776.
[184]
Wang, C.-H., Outlier identification and market segmentation using kernel-based clustering techniques. Exp. Syst. Appl. v36 i2. 3744-3750.
[185]
J. Yang, W. Wang, CLUSEQ: efficient and effective sequence clustering, in: Proceedings of the 19th International Conference on Data Engineering, IEEE, 2003, pp. 101-112.
[186]
Yong, S.-P., Deng, J.D. and Purvis, M.K., Novelty detection in wildlife scenes through semantic context modelling. Pattern Recognit. v45 i9. 3439-3450.
[187]
Yong, S., Deng, J. and Purvis, M., Wildlife video key-frame extraction based on novelty detection in semantic context. Multimed. Tools Appl. v62 i2. 359-376.
[188]
Yu, D., Sheikholeslami, G. and Zhang, A., Findout: finding outliers in very large datasets. . Knowl. Inf. Syst. v4 i4. 387-412.
[189]
Unsupervised outlier detection in sensor networks using aggregation tree. Adv. Data Min. Appl. v4632. 158-169.
[190]
E. Knorr, R. Ng, Algorithms for mining distance-based outliers in large datasets, in: Proceedings of the International Conference on Very Large Data Bases, Citeseer, 1998, pp. 392-403.
[191]
Y. Tao, X. Xiao, S. Zhou, Mining distance-based outliers from large databases in any metric space, in: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2006, pp. 394-403.
[192]
Wei, L., Qian, W., Zhou, A., Jin, W. and Yu, J., Hot: hypergraph-based outlier test for categorical data. Adv. Knowl. Discov. Data Min. v2637. 562
[193]
R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, 1994, pp. 487-499.
[194]
S. Papadimitriou, H. Kitagawa, P. Gibbons, C. Faloutsos, LOCI: fast outlier detection using the local correlation integral, in: Proceedings of the 19th International Conference on Data Engineering, IEEE, 2003, pp. 315-326.
[195]
A. Chiu, A. Fu, Enhancements on local outlier detection, in: Proceedings of the 7th International Database Engineering and Applications Symposium, IEEE, 2003, pp. 298-307.
[196]
Tang, J., Chen, Z., Fu, A. and Cheung, D., Enhancing effectiveness of outlier detections for low density patterns. Adv. Knowl. Discov. Data Min. v2336. 535-548.
[197]
D. Ren, B. Wang, W. Perrizo, RDF: a density-based outlier detection method using vertical data representation, in: Proceedings of the 4th IEEE International Conference on Data Mining, ICDM'04, IEEE, 2004, pp. 503-506.
[198]
Yu, J., Qian, W., Lu, H. and Zhou, A., Finding centric local outliers in categorical/numerical spaces. Knowl. Inf. Syst. v9 i3. 309-338.
[199]
Tang, J., Chen, Z., Fu, A. and Cheung, D., Capabilities of outlier detection in large datasets, framework and methodologies. Knowl. Inf. Syst. v11 i1. 45-84.
[200]
P. Sun, S. Chawla, On local spatial outliers, in: Proceedings of the 4th IEEE International Conference on Data Mining, IEEE, 2004, pp. 209-216.
[201]
P. Sun, S. Chawla, B. Arunasalam, Mining for outliers in sequential databases, in: Proceedings of the 6th SIAM International Conference on Data Mining, vol. 124, Society for Industrial Mathematics, 2006.
[202]
P. Chan, M. Mahoney, M. Arshad, A Machine Learning Approach to Anomaly Detection, Technical Report, Department of Computer Science, Florida Institute Technology Melbourne, 2003.
[203]
J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981.
[204]
Krishnapuram, R. and Keller, J., A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. v1 i2. 98-110.
[205]
A. Pires, C. Santos-Pereira, Using clustering and robust estimators to detect outliers in multivariate data, in: Proceedings of the International Conference on Robust Statistics, 2005.
[206]
A. Vinueza, G. Grudic, Unsupervised Outlier Detection and Semi-Supervised Learning, Technical Report CU-CS-976-04, University of Colorado at Boulder, 2004.
[207]
N. Wu, J. Zhang, Factor analysis based anomaly detection, in: Proceedings of the Information Assurance Workshop, IEEE Systems, Man and Cybernetics Society, IEEE, 2003, pp. 108-115.
[208]
Ertöz, L., Steinbach, M. and Kumar, V., Finding topics in collections of documents: a shared nearest neighbor approach. . Clust. Inf. Retr. v11. 83-103.
[209]
Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. v12 i3. 582-588.
[210]
Zhou, J., Fu, Y., Sun, C. and Fang, Y., Unsupervised distributed novelty detection on scientific simulation data. J. Comput. Inf. Syst. v7 i5. 1533-1540.
[211]
Spinosa, E., deLeon, A., de Carvalho, F. and Gama, J., Novelty detection with application to data streams. Intell. Data Anal. v13 i3. 405-422.
[212]
Hassan, A.F., Mokhtar, H.M.O. and Hegazy, O., A heuristic approach for sensor network outlier detection. Int. J. Res. Rev. Wirel. Sensor Netw. (IJRRWSN). v1 i4. 66-72.
[213]
T. Idé, S. Papadimitriou, M. Vlachos, Computing correlation anomaly scores using stochastic nearest neighbors, in: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM), IEEE, 2007, pp. 523-528.
[214]
K. Onuma, H. Tong, C. Faloutsos, Tangent: a novel,'surprise me', recommendation algorithm, in: Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2009, pp. 657-666.
[215]
Augusteijn, M. and Folkert, B., Neural network classification and novelty detection. Int. J. Remote Sens. v23 i14. 2891-2902.
[216]
Singh, S. and Markou, M., An approach to novelty detection applied to the classification of image regions. IEEE Trans. Knowl. Data Eng. v16 i4. 396-407.
[217]
P. Crook, S. Marsland, G. Hayes, U. Nehmzow, A tale of two filters-on-line novelty detection, in: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA'02, vol. 4, IEEE, 2002, pp. 3894-3899.
[218]
I. Diaz, J. Hollmen, Residual generation and visualization for understanding novel process conditions, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN'02, vol. 3, IEEE, 2002, pp. 2070-2075.
[219]
Hawkins, S., He, H., Williams, G. and Baxter, R., Outlier detection using replicator neural networks. Data Wareh. Know. Discov. v2454. 113-123.
[220]
Japkowicz, N., Supervised versus unsupervised binary-learning by feedforward neural networks. Mach. Learn. v42 i1. 97-122.
[221]
Manevitz, L. and Yousef, M., One-class document classification via neural networks. Neurocomputing. v70 i7. 1466-1481.
[222]
B. Thompson, R. Marks, J. Choi, M. El-Sharkawi, M. Huang, C. Bunje, Implicit learning in autoencoder novelty assessment, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN'02, vol. 3, IEEE, 2002, pp. 2878-2883.
[223]
G. Williams, R. Baxter, H. He, S. Hawkins, L. Gu, A comparative study of RNN for outlier detection in data mining, in: Proceedings of the IEEE International Conference on Data Mining, IEEE, 2002, pp. 709-712.
[224]
S. Jakubek, T. Strasser, Fault-diagnosis using neural networks with ellipsoidal basis functions, in: Proceedings of the American Control Conference, vol. 5, IEEE, 2002, pp. 3846-3851.
[225]
Li, Y., Pont, M. and Barrie Jones, N., Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where unknown faults may occur. Pattern Recognit. Lett. v23 i5. 569-577.
[226]
M.K. Albertini, R.F. de Mello, A self-organizing neural network for detecting novelties, in: Proceedings of the 2007 ACM Symposium on Applied Computing, SAC '07, ACM, New York, NY, USA, 2007, pp. 462-466.
[227]
Barreto, G. and Aguayo, L., Time series clustering for anomaly detection using competitive neural networks. In: Príncipe, J., Miikkulainen, R. (Eds.), Advances in Self-Organizing Maps, Lecture Notes in Computer Science, vol. 5629. Springer, Berlin Heidelberg. pp. 28-36.
[228]
Deng, D. and Kasabov, N., On-line pattern analysis by evolving self-organizing maps. Neurocomputing. v51. 87-103.
[229]
García-Rodríguez, J., Angelopoulou, A., García-Chamizo, J., Psarrou, A., Orts Escolano, S. and Morell Giménez, V., Autonomous growing neural gas for applications with time constraint: optimal parameter estimation. . Neural Netw. v32. 196-208.
[230]
Hristozov, D., Oprea, T. and Gasteiger, J., Ligand-based virtual screening by novelty detection with self-organizing maps. J. Chem. Inf. Model. v47 i6. 2044-2062.
[231]
D. Kit, B. Sullivan, D. Ballard, Novelty detection using growing neural gas for visuo-spatial memory, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2011, pp. 1194-1200.
[232]
Marsland, S., Shapiro, J. and Nehmzow, U., A self-organising network that grows when required. Neural Netw. v15 i8-9. 1041-1058.
[233]
Marsland, S., Nehmzow, U. and Shapiro, J., On-line novelty detection for autonomous mobile robots. Robot. Auton. Syst. v51 i2. 191-206.
[234]
M. Ramadas, S. Ostermann, B. Tjaden, Detecting anomalous network traffic with self-organizing maps, in: Recent Advances in Intrusion Detection, Springer, 2003, pp. 36-54.
[235]
Wu, F., Wang, T. and Lee, J., An online adaptive condition-based maintenance method for mechanical systems. Mech. Syst. Signal Process. v24 i8. 2985-2995.
[236]
Y. Chen, B. Malin, Detection of anomalous insiders in collaborative environments via relational analysis of access logs, in: Proceedings of the 1st ACM Conference on Data and Application Security and Privacy, ACM, 2011, pp. 63-74.
[237]
Chen, Y., Nyemba, S. and Malin, B., Detecting anomalous insiders in collaborative information systems. IEEE Trans. Dependable Secur. Comput. v9 i3. 332-344.
[238]
Günter, S., Schraudolph, N. and Vishwanathan, S., Fast iterative kernel principal component analysis. J. Mach. Learn. Res. v8. 1893-1918.
[239]
Hoffmann, H., Kernel PCA for novelty detection. Pattern Recognit. v40 i3. 863-874.
[240]
Lakhina, A., Crovella, M. and Diot, C., Mining anomalies using traffic feature distributions. ACM SIGCOMM Comput. Commun. Rev. v35 i4. 217-228.
[241]
Kassab, R. and Alexandre, F., Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data. Mach. Learn. v74 i2. 191-234.
[242]
Feature extraction for novelty detection as applied to fault detection in machinery. Pattern Recognit. Lett. v32 i7. 1054-1061.
[243]
Perera, A., Papamichail, N., Bírsan, N., Weimar, U. and Marco, S., On-line novelty detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. IEEE Sens. J. v6 i3. 770-783.
[244]
T. Ide, H. Kashima, Eigenspace-based anomaly detection in computer systems, in: Proceedings of the 11th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2004, pp. 440-449.
[245]
M. Shyu, S. Chen, K. Sarinnapakorn, L. Chang, A Novel Anomaly Detection Scheme Based on Principal Component Classifier, Technical Report, DTIC Document, 2003.
[246]
Thottan, M. and Ji, C., Anomaly detection in IP networks. IEEE Trans. Signal Process. v51 i8. 2191-2204.
[247]
Toivola, J., Prada, M. and Hollmén, J., Novelty detection in projected spaces for structural health monitoring. Adv. Intell. Data Anal. IX. v6065. 208-219.
[248]
Xiao, Y., Wang, H., Xu, W. and Zhou, J., L1 norm based KPCA for novelty detection. Pattern Recognit. v46 i1. 389-396.
[249]
Haggett, S., Chu, D. and Marshall, I., Evolving a dynamic predictive coding mechanism for novelty detection. Knowl. Based Syst. v21 i3. 217-224.
[250]
Hosoya, T., Baccus, S. and Meister, M., Dynamic predictive coding by the retina. Nature. v436 i7047. 71-77.
[251]
Kohonen, T., The self-organizing map. Proc. IEEE. v78 i9. 1464-1480.
[252]
Labib, K. and Vemuri, R., NSOM: a real-time network-based intrusion detection system using self-organizing maps. . Netw. Secur. 1-6.
[253]
Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Netw. v11 i3. 601-614.
[254]
J. Blackmore, R. Miikkulainen, Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 1, 1993, pp. 450-455.
[255]
Fritzke, B., Growing cell structures - a self-organizing network for unsupervised and supervised learning. Neural Netw. v7 i9. 1441-1460.
[256]
A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. v7. 625-632.
[257]
Jolliffe, I., . 2002. MyiLibrary, Principal Component Analysis, 2002.Wiley Online Library.
[258]
R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in: Proceedings of the 11th ACM International Conference on Knowledge Discovery in Data Mining (SIGKDD), ACM, 2005, pp. 401-410.
[259]
Schölkopf, B., Smola, A. and Müller, K., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. v10 i5. 1299-1319.
[260]
Kwak, N., Principal component analysis based on l1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. v30 i9. 1672-1680.
[261]
C. Noble, D. Cook, Graph-based anomaly detection, in: Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2003, pp. 631-636.
[262]
J. Sun, H. Qu, D. Chakrabarti, C. Faloutsos, Neighborhood formation and anomaly detection in bipartite graphs, in: Proceedings of the 5th IEEE International Conference on Data Mining, IEEE, 2005, pp. 418-425.
[263]
J. Sun, Y. Xie, H. Zhang, C. Faloutsos, Less is more: compact matrix decomposition for large sparse graphs, in: Proceedings of the 7th SIAM International Conference in Data Mining, 2007.
[264]
V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, B. Maglaris, Hierarchical anomaly detection in distributed large-scale sensor networks, in: Proceedings of the 11th IEEE Symposium on Computers and Communications, ISCC'06, IEEE, 2006, pp. 761-767.
[265]
V. Lämsä, T. Raiko, Novelty detection by nonlinear factor analysis for structural health monitoring, in: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, 2010, pp. 468-473.
[266]
Timusk, M., Lipsett, M. and Mechefske, C., Fault detection using transient machine signals. Mech. Syst. Signal Process. v22 i7. 1724-1749.
[267]
Tax, D. and Duin, R., Support vector domain description. Pattern Recognit. Lett. v20 i11. 1191-1199.
[268]
Song, Q., Hu, W. and Xie, W., Robust support vector machine with bullet hole image classification. IEEE Trans. Syst. Man Cybern. Part C. v32 i4. 440-448.
[269]
W. Hu, Y. Liao, V. Vemuri, Robust anomaly detection using support vector machines, in: Proceedings of the International Conference on Machine Learning, 2003, pp. 282-289.
[270]
G. Li, C. Wen, Z. Li, A new online learning with kernels method in novelty detection, in: Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society (IECON), IEEE, 2011, pp. 2311-2316.
[271]
Manevitz, L. and Yousef, M., One-class SVMs for document classification. J. Mach. Learn. Res. v2. 139-154.
[272]
C. Campbell, K. Bennett, A linear programming approach to novelty detection, in: Proceedings of the Conference on Advances in Neural Information Processing Systems, vol. 13, The MIT Press, 2001, pp. 395-401.
[273]
T. Le, D. Tran, W. Ma, D. Sharma, An optimal sphere and two large margins approach for novelty detection, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1-6.
[274]
Le, T., Tran, D., Ma, W. and Sharma, D., Multiple distribution data description learning algorithm for novelty detection. Adv. Knowl. Discov. Data Min. v6635. 246-257.
[275]
Liu, Y.-H., Liu, Y.-C. and Chen, Y.-J., Fast support vector data descriptions for novelty detection. IEEE Trans. Neural Netw. v21 i8. 1296-1313.
[276]
High-speed inline defect detection for TFT-LCD array process using a novel support vector data description. Exp. Syst. Appl. v38 i5. 6222-6231.
[277]
Peng, X. and Xu, D., Efficient support vector data descriptions for novelty detection. Neural Comput. Appl. v21 i8. 2023-2032.
[278]
Wu, M. and Ye, J., A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Trans. Pattern Anal. Mach. Intell. v31 i11. 2088-2092.
[279]
Y. Xiao, B. Liu, L. Cao, X. Wu, C. Zhang, Z. Hao, F. Yang, J. Cao, Multi-sphere support vector data description for outliers detection on multi-distribution data, in: Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW), IEEE, 2009, pp. 82-87.
[280]
Clifton, L., Yin, H. and Zhang, Y., Support vector machine in novelty detection for multi-channel combustion data. Adv. Neural Netw. (ISNN). v3973. 836-843.
[281]
L. Clifton, H. Yin, D. Clifton, Y. Zhang, Combined support vector novelty detection for multi-channel combustion data, in: Proceedings of the IEEE International Conference on Networking, Sensing and Control, IEEE, 2007, pp. 495-500.
[282]
P.F. Evangelista, M.J. Embrechts, B.K. Szymanski, Taming the curse of dimensionality in kernels and novelty detection, in: Applied Soft Computing Technologies: The Challenge of Complexity, Springer Verlag, 2006, pp. 431-444.
[283]
Gardner, A., Krieger, A., Vachtsevanos, G. and Litt, B., One-class novelty detection for seizure analysis from intracranial EEG. J. Mach. Learn. Res. v7. 1025-1044.
[284]
D.R. Hardoon, L.M. Manevitz, fMRI analysis via one-class machine learning techniques, in: Proceedings of the 19th International Joint Conference on Artificial intelligence, IJCAI'05, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005, pp. 1604-1605.
[285]
Hayton, P., Utete, S., King, D., King, S., Anuzis, P. and Tarassenko, L., Static and dynamic novelty detection methods for jet engine health monitoring. Philos. Trans. R. Soc. A. v365 i1851. 493-514.
[286]
K. Heller, K. Svore, A. Keromytis, S. Stolfo, One class support vector machines for detecting anomalous windows registry accesses, in: Proceedings of the Workshop on Data Mining for Computer Security, 2003.
[287]
A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, J. Srivastava, A comparative study of anomaly detection schemes in network intrusion detection, in: Proceedings of the 3rd SIAM International Conference on Data Mining, vol. 3, SIAM, 2003, pp. 25-36.
[288]
Lee, H. and Cho, S., Application of LVQ to novelty detection using outlier training data. Pattern Recognit. Lett. v27 i13. 1572-1579.
[289]
J. Ma, S. Perkins, Online novelty detection on temporal sequences, in: Proceedings of the Ninth ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2003, pp. 613-618.
[290]
J. Ma, S. Perkins, Time-series novelty detection using one-class support vector machines, in: Proceedings of the International Joint Conference on Neural Networks, vol. 3, IEEE, 2003, pp. 1741-1745.
[291]
A. Rabaoui, H. Kadri, N. Ellouze, New approaches based on one-class SVMs for impulsive sounds recognition tasks, in: Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, IEEE, 2008, pp. 285-290.
[292]
Zhuang, L. and Dai, H., Parameter optimization of kernel-based one-class classifier on imbalance learning. J. Comput. v1 i7. 32-40.
[293]
Z. Wu, W. Xie, J. Yu, Fuzzy c-means clustering algorithm based on kernel method, in: Proceedings of the 5th International Conference on Computational Intelligence and Multimedia Applications (ICCIMA), IEEE, 2003, pp. 49-54.
[294]
V. Roth, Outlier detection with one-class kernel fisher discriminants, in: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), 2004.
[295]
Roth, V., Kernel fisher discriminants for outlier detection. Neural Comput. v18 i4. 942-960.
[296]
Sotiris, V., Tse, P. and Pecht, M., Anomaly detection through a Bayesian support vector machine. IEEE Trans. Reliab. v59 i2. 277-286.
[297]
Munoz, A. and Moguerza, J., Estimation of high-density regions using one-class neighbor machines. IEEE Trans. Pattern Anal. Mach. Intell. v28 i3. 476-480.
[298]
Y. Li, A surface representation approach for novelty detection, in: Proceedings of the International Conference on Information and Automation (ICIA), IEEE, 2008, pp. 1464-1468.
[299]
He, Z., Deng, S. and Xu, X., An optimization model for outlier detection in categorical data. Adv. Intell. Comput. v3644. 400-409.
[300]
He, Z., Deng, S., Xu, X. and Huang, J., A fast greedy algorithm for outlier mining. Adv. Knowl. Discov. Data Min. v3918. 567-576.
[301]
S. Ando, Clustering needles in a haystack: an information theoretic analysis of minority and outlier detection, in: Proceedings of the 7th IEEE International Conference on Data Mining, ICDM'07, IEEE, 2007, pp. 13-22.
[302]
E. Keogh, S. Lonardi, C. Ratanamahatana, Towards parameter-free data mining, in: Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), ACM, 2004, pp. 206-215.
[303]
Keogh, E., Lin, J., Lee, S. and Herle, H., Finding the most unusual time series subsequence: algorithms and applications. . Knowl. Inf. Syst. v11 i1. 1-27.
[304]
J. Lin, E. Keogh, A. Fu, H. Van Herle, Approximations to magic: finding unusual medical time series, in: Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, IEEE, 2005, pp. 329-334.
[305]
Fu, A., Leung, O., Keogh, E. and Lin, J., Finding time series discords based on haar transform. Adv. Data Min. Appl. v4093. 31-41.
[306]
M. Gamon, Graph-based text representation for novelty detection, in: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, USA, 2006, pp. 17-24.
[307]
Filippone, M. and Sanguinetti, G., Information theoretic novelty detection. Pattern Recognit. v43 i3. 805-814.
[308]
Filippone, M. and Sanguinetti, G., A perturbative approach to novelty detection in autoregressive models. IEEE Trans. Signal Process. v59 i3. 1027-1036.
[309]
M. Filippone, G. Sanguinetti, Novelty Detection in Autoregressive Models Using Information Theoretic Measures, Technical Report CS-09-06, Department of Computer Science, University of Sheffield, 2009.
[310]
Itti, L. and Baldi, P., Bayesian surprise attracts human attention. Vis. Res. v49 i10. 1295-1306.

Cited By

View all
  • (2024)A Comprehensive Survey on Rare Event PredictionACM Computing Surveys10.1145/369995557:3(1-39)Online publication date: 11-Nov-2024
  • (2024)TIB: Detecting Unknown Objects via Two-Stream Information BottleneckIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.332352346:1(611-625)Online publication date: 1-Jan-2024
  • (2024)Lightweight Voice Spoofing Detection Using Improved One-Class Learning and Knowledge DistillationIEEE Transactions on Multimedia10.1109/TMM.2023.332150526(4360-4374)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Signal Processing
Signal Processing  Volume 99, Issue
June, 2014
250 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 June 2014

Author Tags

  1. Machine learning
  2. Novelty detection
  3. One-class classification

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Comprehensive Survey on Rare Event PredictionACM Computing Surveys10.1145/369995557:3(1-39)Online publication date: 11-Nov-2024
  • (2024)TIB: Detecting Unknown Objects via Two-Stream Information BottleneckIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.332352346:1(611-625)Online publication date: 1-Jan-2024
  • (2024)Lightweight Voice Spoofing Detection Using Improved One-Class Learning and Knowledge DistillationIEEE Transactions on Multimedia10.1109/TMM.2023.332150526(4360-4374)Online publication date: 1-Jan-2024
  • (2024)Ensemble Uncertainty Guided Road Scene Anomaly Detection: A Simple Meta-Learning ApproachIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.336560925:9(10754-10765)Online publication date: 1-Mar-2024
  • (2024)Unsupervised Out-of-Distribution Object Detection via PCA-Driven Dynamic Prototype EnhancementIEEE Transactions on Image Processing10.1109/TIP.2024.337846433(2431-2446)Online publication date: 22-Mar-2024
  • (2024)Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-CommerceIEEE Transactions on Consumer Electronics10.1109/TCE.2024.335547770:1(1631-1639)Online publication date: 24-Jan-2024
  • (2024)A Comprehensive Survey on Deep Graph Representation LearningNeural Networks10.1016/j.neunet.2024.106207173:COnline publication date: 2-Jul-2024
  • (2024)Managing the unknown in machine learningNeurocomputing10.1016/j.neucom.2024.128073599:COnline publication date: 28-Sep-2024
  • (2024)Learnable product quantization for anomaly detectionNeurocomputing10.1016/j.neucom.2024.127532582:COnline publication date: 14-May-2024
  • (2024)Mutual information maximization for semi-supervised anomaly detectionKnowledge-Based Systems10.1016/j.knosys.2023.111196284:COnline publication date: 25-Jan-2024
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media