Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
rapid-communication

DOA estimation of noncircular signals with direction-dependent mutual coupling

Published: 07 January 2025 Publication History

Abstract

In this paper, a reweighted sparse recovery algorithm based on the optimal weighted subspace fitting (WSF) for non-circular signals in direction-dependent mutual coupling (MC) is proposed. Firstly, a new augmented model is constructed by leveraging the characteristics of non-circular signals. Next, a new direction matrix without mutual coupling coefficients is obtained by a novel transformation method. Then, two sparse recovery models are constructed by utilizing the WSF technique, and the sparsity of the solution is increased by constructing a weighted matrix. Finally, the direction of arrival (DOA) is achieved by a sparse recovery approach. For both coherent and incoherent signals, the developed approach can achieve precise DOA estimation in the case of direction-dependent MC. The robustness and advantage of the developed approach are testified by various experiments.

References

[1]
Krim H., Viberg M., Two decades of array signal processing research: the parametric approach, IEEE Signal Process. Mag. 13 (4) (1996) 67–94.
[2]
Schmidt R., Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas and Propagation 34 (3) (1986) 276–280.
[3]
Van Trees H.L., Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part Iv), Wiley-Interscience, 2002, p. 100.
[4]
Wang H., Wan L., Dong M., Ota K., Wang X., Assistant vehicle localization based on three collaborative base stations via SBL-based robust DOA estimation, IEEE Internet Things J. 6 (3) (2019) 5766–5777.
[5]
Wan L., Sun Y., Sun L., Ning Z., Rodrigues J.J.P.C., Deep learning based autonomous vehicle super resolution DOA estimation for safety driving, IEEE Trans. Intell. Transp. Syst. 22 (7) (2021) 4301–4315.
[6]
Porat B., Friedlander B., Analysis of the asymptotic relative efficiency of the MUSIC algorithm, IEEE Trans. Acoust. Speech Signal Process. 36 (4) (1988) 532–544.
[7]
Kundu D., Modified MUSIC algorithm for estimating DOA of signals, Signal process. 48 (1) (1996) 85–90.
[8]
Roy R., Kailath T., ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. Intell. Transp. Syst. 37 (7) (1989) 984–995.
[9]
Gao F., Gershman A.B., A generalized ESPRIT approach to direction-of-arrival estimation, IEEE Signal Process. Lett. 12 (3) (2005) 254–257.
[10]
Mallat S.G., Zhang Zhifeng., Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process. 41 (12) (1993) 3397–3415.
[11]
O’Brien M.S., Sinclair A.N., Kramer S.M., Recovery of a sparse spike time series by L/sub 1/ norm deconvolution, IEEE Trans. Signal Process. 42 (12) (1994) 3353–3365.
[12]
Tipping M.E., Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res. 1 (2001) 211–244.
[13]
Ye Z., Liu C., On the resiliency of MUSIC direction finding against antenna sensor coupling, IEEE Trans. Antennas and Propagation 56 (2) (2008) 371–380.
[14]
Dai J., Zhao D., Ji X., A sparse representation method for DOA estimation with unknown mutual coupling, IEEE Antennas Wirel. Propag. Lett. 11 (2012) 1210–1213.
[15]
Liao B., Zhang Z.G., Chan S.C., DOA estimation and tracking of ULAs with mutual coupling, IEEE Trans. Aerosp. Electron. Syst. 48 (1) (2012) 891–905.
[16]
Wang Q., Dou T., Chen H., Yan W., Liu W., Effective block sparse representation algorithm for DOA estimation with unknown mutual coupling, IEEE Commun. Lett. 21 (12) (2017) 2622–2625.
[17]
Wang X., Meng D., Huang M., Wan L., Reweighted regularized sparse recovery for DOA estimation with unknown mutual coupling, IEEE Commun. Lett. 23 (2) (2019) 290–293.
[18]
Elbir A.M., Direction finding in the presence of direction-dependent mutual coupling, IEEE Antennas Wirel. Propag. Lett. 16 (2017) 1541–1544.
[19]
Ge Q., Zhang Y., Wang Y., A low complexity algorithm for direction of arrival estimation with direction-dependent mutual coupling, IEEE Commun. Lett. 24 (1) (2020) 90–94.
[20]
Zheng Z., Yang C., Direction-of-arrival estimation of coherent signals under direction-dependent mutual coupling, IEEE Commun. Lett. 25 (1) (2021) 147–151.
[21]
Abeida H., Delmas J.P., MUSIC-like estimation of direction of arrival for noncircular sources, IEEE Trans. Signal Process. 54 (7) (2006) 2678–2690.
[22]
Chargé P., Wang Y., Saillard J., A non-circular sources direction finding method using polynomial rooting, Signal process. 81 (8) (2001) 1765–1770.
[23]
A. Zoubir, P. Chargé, Y. Wang, Non circular sources localization with ESPRIT, in: Proc. the Eur. Conf. Wireless Technology (ECWT 2003), Munich, Germany, 2003, pp. 8–10.
[24]
M. Haardt, F. Romer, Enhancements of unitary ESPRIT for non-circular sources, in: Proc. Int. Conf. Acoust. Speech Signal Process, ICASSP, Montreal, QC, Canada, 2004.
[25]
Liu Z.M., Huang Z.T., Zhou Y.Y., Liu J., Direction-of-arrival estimation of noncircular signals via sparse representation, IEEE Trans. Aerosp. Electron. Syst. 48 (3) (2012) 2690–2698.
[26]
Wang Q., Wang X., Chen H., DOA estimation algorithm for strictly noncircular sources with unknown mutual coupling, IEEE Commun. Lett. 23 (12) (2019) 2215–2218.
[27]
Xie J., Wang L., Su J., Efficient DOA estimation algorithm for noncircular sources under unknown mutual coupling, IEEE Sens. Lett. 2 (3) (2018) 1–4.
[28]
Xie J., Wang L., Wang Y., Efficient real-valued rank reduction algorithm for DOA estimation of noncircular sources under mutual coupling, IEEE Access 6 (2018) 64450–64460.
[29]
Li L., Fu T., Wang X., Huang M., Wan L., Yang Y., DOA estimation of strictly noncircular sources in wireless sensor array network via block sparse representation, IEEE Access 8 (2020) 47500–47508.
[30]
L. Li, D. Luo, G. Bi, X. Wang, D. Meng, Joint sparsity-inducing DOA estimation for strictly noncircular sources with unknown mutual coupling, in: Proc. IEEE 11th Sensor Array Multichannel Signal Process. Workshop, SAM, Hangzhou, China, 2020, pp. 1–4.
[31]
Jian L., Wang X., Shi J., Lan X., Robust sparse Bayesian learning scheme for DOA estimation with non-circular sources, Mathematics 10 (6) (2022) 923.
[32]
Viberg M., Ottersten B., Kailath T., Detection and estimation in sensor arrays using weighted subspace fitting, IEEE Trans. Signal Process. 39 (11) (1991) 2436–2449.
[33]
Golub G.H., Pereyra V., The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal. 10 (2) (1973) 413–432.
[34]
Viberg M., Ottersten B., Sensor array processing based on subspace fitting, IEEE Trans. Signal Process. 39 (5) (1991) 1110–1121.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Signal Processing
Signal Processing  Volume 227, Issue C
Feb 2025
703 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 07 January 2025

Author Tags

  1. DOA estimation
  2. Non-circular sources
  3. Direction-dependent MC
  4. Weighted subspace fitting

Qualifiers

  • Rapid-communication

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media