Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Hausdorff dimension and oracle constructions

Published: 14 April 2006 Publication History

Abstract

Bennett and Gill [Relative to a random oracle A, PA ≠ NPA ≠ co-NPA with probability 1, SIAM J. Comput. 10 (1981) 96-113] proved that PA ≠ NPA relative to a random oracle A, or in other words, that the set O[P=NP] = {A | PA = NPA} has Lebesgue measure 0. In contrast, we show that O[P=NP] has Hausdorff dimension 1.This follows from a much more general theorem: if there is a relativizable and paddable oracle construction for a complexity-theoretic statement Φ, then the set of oracles relative to which Φ holds has Hausdorff dimension 1.We give several other applications including proofs that the polynomial-time hierarchy is infinite relative to a Hausdorff dimension 1 set of oracles and that PA ≠ NPA ∩ coNPA relative to a Hausdorff dimension 1 set of oracles.

References

[1]
[1] C.H. Bennett, J. Gill, Relative to a random oracle A, PA ≠ NPA ≠ co-NPA with probability 1, SIAM J. Comput. 10 (1981) 96-113.
[2]
[2] R.V. Book, On collapsing the polynomial-time hierarchy, Inform. Process. Lett. 52 (5) (1994) 235-237.
[3]
[3] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Håstad, D. Ranjan, R. Rohatgi, The random oracle hypothesis is false, J. Comput. System Sci. 49 (1) (1994) 24-39.
[4]
[4] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.
[5]
[5] L. Fortnow, Relativized worlds with an infinite hierarchy, Inform. Process. Lett. 69 (6) (1999) 309-313.
[6]
[6] J. Håstad, Computational Limitations for Small-Depth Circuits, The MIT Press, Cambridge, MA, 1986.
[7]
[7] F. Hausdorff, Dimension und äußeres Maß, Math. Ann. 79 (1919) 157-179.
[8]
[8] H. Heller, On relativized polynomial and exponential computations, SIAM J. Comput. 13 (4) (1984) 717-725.
[9]
[9] H. Heller, On relativized exponential and probabilistic complexity classes, Inform. and Control 71 (1986) 231-243.
[10]
[10] J.M. Hitchcock, Fractal dimension and logarithmic loss unpredictability, Theoret. Comput. Sci. 304 (1-3) (2003) 431-441.
[11]
[11] J.M. Hitchcock, J.H. Lutz, E. Mayordomo, Scaled dimension and nonuniform complexity, J. Comput. System Sci. 69 (2) (2004) 97-122.
[12]
[12] C. Lund, L. Fortnow, H.J. Karloff, N. Nisan, Algebraic methods for interactive proof systems, J. ACM 39 (4) (1992) 859-868.
[13]
[13] J.H. Lutz, Dimension in complexity classes, SIAM J. Comput. 32(5)(2003) 1236-1259.
[14]
[14] A. Shamir, IP = PSPACE, J. ACM 39 (4) (1992) 869-877.
[15]
[15] A. Yao, Separating the polynomial-time hierarchy by oracles, in: 26th IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Silver Spring, MD, 1985, pp. 1-10.

Cited By

View all
  • (2021)Polynomial-Time Random Oracles and Separating Complexity ClassesACM Transactions on Computation Theory10.1145/343438913:1(11-16)Online publication date: 21-Jan-2021
  • (2006)Dimension characterizations of complexity classesProceedings of the 31st international conference on Mathematical Foundations of Computer Science10.1007/11821069_41(471-479)Online publication date: 28-Aug-2006

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 355, Issue 3
14 April 2006
135 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 14 April 2006

Author Tags

  1. Hausdorff dimension
  2. computational complexity
  3. oracles
  4. relativization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Polynomial-Time Random Oracles and Separating Complexity ClassesACM Transactions on Computation Theory10.1145/343438913:1(11-16)Online publication date: 21-Jan-2021
  • (2006)Dimension characterizations of complexity classesProceedings of the 31st international conference on Mathematical Foundations of Computer Science10.1007/11821069_41(471-479)Online publication date: 28-Aug-2006

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media