Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

State complexity of operations on two-way finite automata over a unary alphabet

Published: 01 August 2012 Publication History

Abstract

The paper determines the number of states in two-way deterministic finite automata (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of basic language-theoretic operations on 2DFAs with a certain number of states. It is proved that (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m+n and m+n+1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m+n and 2m+n+4 states; (iii) Kleene star of an n-state 2DFA, (g(n)+O(n))^2 states, where g(n)=e^(^1^+^o^(^1^)^)^n^l^n^n is the maximum value of lcm(p"1,...,p"k) for @__ __p"i=

References

[1]
Chrobak, M., Finite automata and unary languages. Theoretical Computer Science. v47. 149-158.
[2]
Domaratzki, M. and Okhotin, A., State complexity of power. Theoretical Computer Science. v410 i24-25. 2377-2392.
[3]
Dressler, R.E., A stronger Bertrand's postulate with an application to partitions. Proceedings of the AMS. v33 i2. 226-228.
[4]
Geffert, V., Mereghetti, C. and Pighizzini, G., Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science. v295 i1-3. 189-203.
[5]
Geffert, V., Mereghetti, C. and Pighizzini, G., Complementing two-way finite automata. Information and Computation. v205 i8. 1173-1187.
[6]
Holzer, M. and Kutrib, M., Nondeterministic descriptional complexity of regular languages. International Journal of Foundations of Computer Science. v14. 1087-1102.
[7]
G. Jirásková, A. Okhotin, On the state complexity of operations on two-way finite automata, in: Developments in Language Theory, (DLT 2008, Kyoto, Japan, 16-19 September 2008), in: LNCS, vol. 5257, pp. 443-454 http://dx.doi.org/10.1007/978-3-540-85780-8_35; full version in progress.
[8]
C.A. Kapoutsis, Removing bidirectionality from nondeterministic finite automata, in: Mathematical Foundations of Computer Science, (MFCS, 2005, Gdansk, Poland, 29 August-2 September 2005), in: LNCS, vol. 3618, pp. 544-555, http://dx.doi.org/10.1007/11549345_47.
[9]
A. Kondacs, J. Watrous, On the power of quantum finite state automata, in: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19-22 October 1997), IEEE, pp. 66-75 http://dx.doi.org/10.1109/SFCS.1997.646094.
[10]
M. Kunc, A. Okhotin, Describing periodicity in two-way deterministic finite automata using transformation semigroups, in: Developments in Language Theory (DLT 2011, Milan, Italy, 19-22 July 2011), in: LNCS, vol. 6795, pp. 324-336, http://dx.doi.org/10.1007/978-3-642-22321-1_28.
[11]
Kunc, M. and Okhotin, A., State complexity of union and intersection for two-way nondeterministic finite automata. Fundamenta Informaticae. v110 i1-4. 231-239.
[12]
M. Kunc, A. Okhotin, Reversible two-way finite automata over a unary alphabet, TUCS Technical Report 1024, Turku Centre for Computer Science, December 2011.
[13]
Landau, E., Über die Maximalordnung der Permutationen gegebenen Grades (On the maximal order of permutations of a given degree). Archiv der Mathematik und Physik, Ser. 3. i5. 92-103.
[14]
Maslov, A.N., Estimates of the number of states of finite automata. Soviet Mathematics Doklady. v11. 1373-1375.
[15]
Mereghetti, C. and Pighizzini, G., Optimal simulations between unary automata. SIAM Journal on Computing. v30 i6. 1976-1992.
[16]
Miller, W., The maximum order of an element of a finite symmetric group. American Mathematical Monthly. v94 i6. 497-506.
[17]
Okhotin, A., Unambiguous finite automata over a unary alphabet. Information and Computation. v212. 15-36.
[18]
Pighizzini, G. and Shallit, J., Unary language operations, state complexity and Jacobsthal's function. International Journal of Foundations of Computer Science. v13 i1. 145-159.
[19]
Rampersad, N., The state complexity of L2 and Lk. Information Processing Letters. v98. 231-234.
[20]
M. Sipser, Lower bounds on the size of sweeping automata, in: 11th Annual ACM Symposium on Theory of Computing (STOC 1979, 30 April'2 May 1979, Atlanta, Georgia, USA), pp. 360-364, http://dx.doi.org/10.1145/800135.804429.
[21]
Yu, S., Zhuang, Q. and Salomaa, K., The state complexity of some basic operations on regular languages. Theoretical Computer Science. v125. 315-328.

Cited By

View all
  1. State complexity of operations on two-way finite automata over a unary alphabet

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Theoretical Computer Science
    Theoretical Computer Science  Volume 449, Issue
    August, 2012
    150 pages

    Publisher

    Elsevier Science Publishers Ltd.

    United Kingdom

    Publication History

    Published: 01 August 2012

    Author Tags

    1. Finite automata
    2. Landau's function
    3. Regular languages
    4. State complexity
    5. Two-way automata
    6. Unary languages

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media