Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

No easy puzzles

Published: 27 June 2015 Publication History
  • Get Citation Alerts
  • Abstract

    We model jigsaw puzzle solving and study the number of edge matchings required.Realistic jigsaw puzzles require ( n 2 ) comparisons in the worst case.Realistic jigsaw puzzles require ( n 2 ) comparisons on average.Generalised puzzles require (tightly) O ( n 2 ) and ( n log n ) comparisons. We show that solving (bounded-degree) jigsaw puzzles requires ( n 2 ) edge matching comparisons both in the worst case and in expectation, making all jigsaw puzzles as hard to solve as the trivial upper bound. This result applies to bounded-degree puzzles of all shapes, whether pictorial or apictorial. For non-bounded degree puzzles, we show that ( n log n ) is a tight bound.

    References

    [1]
    Vikraman Arvind, Johannes Köbler, Graph isomorphism is low for ZPP(NP) and other lowness results, in: Lect. Notes Comput. Sc., vol. 1770, Springer Verlag, 2000, pp. 431-442.
    [2]
    Vikraman Arvind, Piyush P. Kukur, Graph isomorphism is in SPP, Inform. and Comput., 204 (2006) 835-852.
    [3]
    Hans L. Bodlaender, Dynamic programming on graphs with bounded treewidth, in: Lecture Notes in Comput. Sci., vol. 317, Springer, Berlin, 1988, pp. 105-118.
    [4]
    S.A. Cook, The complexity of theorem-proving procedures, in: Proc. 3rd ACM Symp. Theory of Computing, 1971, pp. 151-158.
    [5]
    T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Section 8.1: lower bounds for sorting, in: Introduction to Algorithms, MIT Press and McGrow-Hill, 2001, pp. 165-168.
    [6]
    Erik D. Demaine, Martin L. Demaine, Jigsaw puzzles, edge matching, and polyomino packing: connections and complexity, Graphs Combin., 23 (2007) 195-208.
    [7]
    E. Allen Emerson, Joseph Y. Halpern, Decision procedures and expressiveness in the temporal logic of branching time, J. Comput. System Sci., 30 (1985) 1-24.
    [8]
    H. Freeman, L. Garder, Apictorial jigsaw puzzles: the computer solution of a problem in pattern recognition, IEEE Trans. Electron. Comput., C-13 (1964) 118-127.
    [9]
    Andrew C. Gallagher, Jigsaw puzzles with pieces of unknown orientation, in: 25th Conf. Computer Vision and Pattern Recognition, CVPR '12, Providence, Rhode Island, June 2012, pp. 382-389.
    [10]
    Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co., 1979.
    [11]
    Francisco Gindre, David A. Trejo Pizzo, Gabriel Barrera, M. Daniela Lopez De Luise, A criterion-based genetic algorithm solution to the jigsaw puzzle NP-complete problem, in: Proc. World Congress on Engineering and Computer Science, WCECS 2010, San Francisco, Oct. 2010, pp. 367-372.
    [12]
    David Goldberg, Christopher Malon, Marshall Bern, A global approach to automatic solution of jigsaw puzzles, Comput. Geom., 28 (2004) 165-174.
    [13]
    Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Publishing Company, Reading, MA, 1989.
    [14]
    Hans D. Gröger, On the randomized complexity of monotone graph properties, Acta Cybernet., 10 (1992) 119-127.
    [15]
    B.H. Gwee, M.H. Lim, Polyominoes tiling by a genetic algorithm, Comput. Optim. Appl., 6 (1996) 273-291.
    [16]
    Philip Hall, On representatives of subsets, J. Lond. Math. Soc., 10 (1935) 26-30.
    [17]
    Paul R. Halmos, Herbert E. Vaughan, The marriage problem, Amer. J. Math., 72 (1950) 214-215.
    [18]
    Florian Kleber, Robert Sablatnig, Scientific puzzle solving: current techniques and applications, in: Computer Applications to Archaeology, CAA 2009, Williamsburg, Virginia, March 2009.
    [19]
    D.E. Knuth, Section 5.3.1: minimum-comparison sorting, in: The Art of Computer Programming: Sorting and Searching, vol. 3, Addison-Wesley, 1997, pp. 180-197.
    [20]
    Johannes Köbler, Uwe Schoöning, Jacobo Torán, Graph isomorphism is low for PP, Comput. Complexity, 2 (1992) 301-330.
    [21]
    Weixin Kong, Benjamin B. Kimia, On solving 2D and 3D puzzles using curve matching, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii, Dec. 2001, pp. 583-590.
    [22]
    Eyal Kushilevitz, Noam Nisan, Communication Complexity, Cambridge University Press, New York, NY, USA, 1997.
    [23]
    Eugene M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, J. Comput. System Sci., 25 (1982) 42-65.
    [24]
    Brendan D. McKay, Practical graph isomorphism, Congr. Num., 30 (1981) 45-86.
    [25]
    Martin Norgate, Cutting borders: dissected maps and the origins of the jigsaw puzzle, Cartogr. J., 44 (December 2007) 342-350.
    [26]
    G.M. Radack, N.I. Badler, Jigsaw puzzle matching using a boundary-centered polar encoding, Comput. Vis. Graph., 19 (1982) 1-17.
    [27]
    Mahmut Şamil Sağıroğlu, Aytül Erçil, Optimization for automated assembly of puzzles, TOP, 18 (2010) 321-338.
    [28]
    Alan M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc., 42 (1936) 230-265.
    [29]
    Julian R. Ullman, An algorithm for subgraph isomorphism, J. ACM, 23 (1976) 31-42.
    [30]
    Heribert Vollmer, Introduction to Circuit Complexity: A Uniform Approach, Springer-Verlag, Berlin, 1999.
    [31]
    Roger W. Webster, Paul W. Ross, Paul S. Lafollette, Robert L. Stafford, A computer vision system that assembles canonical jigsaw puzzles using the Euclidean skeleton and Isthmus critical points, in: IAPR Workshop on Machine Vision Applications, MVA'90, Tokyo, IAPR, Nov. 1990, pp. 118-127.
    [32]
    Haim Wolfson, Edith Schonberg, Alan Kalvin, Yehezkel Lamdan, Solving jigsaw puzzles by computer, Ann. Oper. Res., 12 (1988) 51-64.
    [33]
    Feng-Hui Yao, Gui-Feng Shao, A shape and image merging technique to solve jigsaw puzzles, Pattern Recogn. Lett., 24 (2003) 1819-1835.

    Cited By

    View all
    • (2018)Logical composition of qualitative shapes applied to solve spatial reasoning testsCognitive Systems Research10.1016/j.cogsys.2018.06.00252:C(82-102)Online publication date: 1-Dec-2018

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Theoretical Computer Science
    Theoretical Computer Science  Volume 586, Issue C
    June 2015
    175 pages

    Publisher

    Elsevier Science Publishers Ltd.

    United Kingdom

    Publication History

    Published: 27 June 2015

    Author Tags

    1. Communication complexity
    2. Jigsaw puzzle
    3. Parsimonious testing
    4. Subgraph isomorphism

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Logical composition of qualitative shapes applied to solve spatial reasoning testsCognitive Systems Research10.1016/j.cogsys.2018.06.00252:C(82-102)Online publication date: 1-Dec-2018

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media