Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Query answering over inconsistent knowledge bases: : A probabilistic approach

Published: 31 October 2022 Publication History
  • Get Citation Alerts
  • Abstract

    Consistent query answering (CQA) is a widely accepted paradigm for querying inconsistent knowledge bases (KBs). A consistent answer to a query is a tuple that is an answer to the query over every repair of the KB, which is in turn a consistent KB whose extensional knowledge “minimally” differs from the original one's. This coarse-grained classification of answers into consistent and non-consistent ones lacks any information about their degree of consistency, i.e., how likely it is that a tuple is an answer to the query, when considering all the repaired KBs. To overcome this limitation, we consider a fine-grained notion of repair for KBs with equality-generating dependencies (EGDs), based on attribute-level updates, and exploit this notion to propose a probabilistic CQA approach, which associates a confidence to each answer, thereby providing more informative query answers. We first show that computing the query answer confidence is # P -hard. Then, in the light of this intractability result, we study the existence of efficient randomized, approximation schemes. In particular, we show that absolute error approximation schemes always exist in the general case, while more refined relative error approximation schemes, i.e., fully polynomial-time, randomized approximation schemes (FPRAS) exist when assuming that the constraints of the knowledge base are primary keys. Finally, we extend our framework to knowledge bases with tuple-generating dependencies (TGDs) and generalize our approximability results to the new setting, and prove additional inapproximability results.

    References

    [1]
    M. Ajtai, Y. Gurevich, Datalog vs first-order logic, J. Comput. Syst. Sci. 49 (1994) 562–588.
    [2]
    G. Alfano, M. Calautti, S. Greco, F. Parisi, I. Trubitsyna, Explainable acceptance in probabilistic abstract argumentation: complexity and approximation, in: KR, 2020, pp. 33–43.
    [3]
    P. Andritsos, A. Fuxman, R.J. Miller, Clean answers over dirty databases: a probabilistic approach, in: Proc. ICDE, 2006, p. 30.
    [4]
    M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proc. PODS, 1999, pp. 68–79.
    [5]
    S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
    [6]
    J. Baget, M. Mugnier, S. Rudolph, M. Thomazo, Walking the complexity lines for generalized guarded existential rules, in: Proc. IJCAI, 2011, pp. 712–717.
    [7]
    L.E. Bertossi, Database Repairing and Consistent Query Answering, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2011.
    [8]
    L.E. Bertossi, Database repairs and consistent query answering: origins and further developments, in: Proc. PODS, 2019, pp. 48–58.
    [9]
    L.E. Bertossi, L. Bravo, E. Franconi, A. Lopatenko, The complexity and approximation of fixing numerical attributes in databases under integrity constraints, Inf. Syst. 33 (2008) 407–434.
    [10]
    M. Bienvenu, On the complexity of consistent query answering in the presence of simple ontologies, in: Proc. AAAI, 2012, pp. 705–711.
    [11]
    M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic knowledge bases under preferred repair semantics, in: Proc. AAAI, 2014, pp. 996–1002.
    [12]
    M. Bienvenu, C. Bourgaux, F. Goasdoué, Computing and explaining query answers over inconsistent dl-lite knowledge bases, J. Artif. Intell. Res. 64 (2019) 563–644.
    [13]
    M. Bienvenu, R. Rosati, Tractable approximations of consistent query answering for robust ontology-based data access, in: Proc. IJCAI, 2013, pp. 775–781.
    [14]
    P. Bohannon, M. Flaster, W. Fan, R. Rastogi, A cost-based model and effective heuristic for repairing constraints by value modification, in: Proc. SIGMOD, 2005, pp. 143–154.
    [15]
    S. Borgwardt, İ.İ. Ceylan, T. Lukasiewicz, Ontology-mediated queries for probabilistic databases, in: Proc. AAAI, 2017, pp. 1063–1069.
    [16]
    S. Borgwardt, İ.İ. Ceylan, T. Lukasiewicz, Recent advances in querying probabilistic knowledge bases, in: Proc. IJCAI, 2018, pp. 5420–5426.
    [17]
    M. Calautti, M. Console, A. Pieris, Benchmarking approximate consistent query answering, in: L. Libkin, R. Pichler, P. Guagliardo (Eds.), PODS, 2021, pp. 233–246.
    [18]
    M. Calautti, G. Gottlob, A. Pieris, Chase termination for guarded existential rules, in: PODS, 2015, pp. 91–103.
    [19]
    M. Calautti, G. Gottlob, A. Pieris, Non-uniformly terminating chase: size and complexity, in: PODS, 2022, pp. 369–378.
    [20]
    M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Exploiting equality generating dependencies in checking chase termination, Proc. VLDB Endow. 9 (2016) 396–407.
    [21]
    M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Preference-based inconsistency-tolerant query answering under existential rules, Artif. Intell. 312 (2022).
    [22]
    M. Calautti, L. Libkin, A. Pieris, An operational approach to consistent query answering, in: Proc. PODS, 2018, pp. 239–251.
    [23]
    M. Calautti, A. Pieris, Semi-oblivious chase termination: the sticky case, Theory Comput. Syst. 65 (2021) 84–121.
    [24]
    A. Calì, G. Gottlob, T. Lukasiewicz, A general datalog-based framework for tractable query answering over ontologies, J. Web Semant. 14 (2012) 57–83.
    [25]
    A. Calì, G. Gottlob, A. Pieris, Towards more expressive ontology languages: the query answering problem, Artif. Intell. 193 (2012) 87–128.
    [26]
    A. Calì, D. Lembo, R. Rosati, On the decidability and complexity of query answering over inconsistent and incomplete databases, in: Proc. PODS, 2003, pp. 260–271.
    [27]
    D. Calvanese, M. Ortiz, M. Simkus, G. Stefanoni, Reasoning about explanations for negative query answers in dl-lite, J. Artif. Intell. Res. 48 (2013) 635–669.
    [28]
    D. Carral, J. Urbani, Checking chase termination over ontologies of existential rules with equality, in: Proc. AAAI, 2020, pp. 2758–2765.
    [29]
    İ.İ. Ceylan, T. Lukasiewicz, E. Malizia, C. Molinaro, A. Vaicenavicius, Explanations for negative query answers under existential rules, in: Proc. KR, 2020, pp. 223–232.
    [30]
    İ.İ. Ceylan, T. Lukasiewicz, E. Malizia, C. Molinaro, A. Vaicenavicius, Preferred explanations for ontology-mediated queries under existential rules, in: Proc. AAAI, 2021, pp. 6262–6270.
    [31]
    İ.İ. Ceylan, T. Lukasiewicz, E. Malizia, A. Vaicenavicius, Explanations for query answers under existential rules, in: Proc. IJCAI, 2019, pp. 1639–1646.
    [32]
    İ.İ. Ceylan, T. Lukasiewicz, E. Malizia, A. Vaicenavicius, Explanations for ontology-mediated query answering in description logics, in: Proc. ECAI, vol. 325, 2020, pp. 672–679.
    [33]
    B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik, Z. Wang, Acyclicity notions for existential rules and their application to query answering in ontologies, J. Artif. Intell. Res. 47 (2013) 741–808.
    [34]
    P. Dagum, R. Karp, M. Luby, S. Ross, An optimal algorithm for Monte Carlo estimation, SIAM J. Comput. 29 (2000) 1484–1496.
    [35]
    N. Dalvi, C. Re, D. Suciu, Queries and materialized views on probabilistic databases, J. Comput. Syst. Sci. 77 (2011).
    [36]
    N.N. Dalvi, D. Suciu, Management of probabilistic data: foundations and challenges, in: Proc. PODS, 2007, pp. 1–12.
    [37]
    N.N. Dalvi, D. Suciu, The dichotomy of probabilistic inference for unions of conjunctive queries, J. ACM 59 (2012).
    [38]
    R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: semantics and query answering, Theor. Comput. Sci. 336 (2005) 89–124.
    [39]
    R. Fink, D. Olteanu, Dichotomies for queries with negation in probabilistic databases, ACM Trans. Database Syst. 41 (2016).
    [40]
    S. Flesca, F. Furfaro, F. Parisi, Querying and repairing inconsistent numerical databases, ACM Trans. Database Syst. 35 (2010).
    [41]
    G. Gottlob, E. Malizia, Achieving new upper bounds for the hypergraph duality problem through logic, SIAM J. Comput. 47 (2018) 456–492.
    [42]
    G. Gottlob, G. Orsi, A. Pieris, Query rewriting and optimization for ontological databases, ACM Trans. Database Syst. 39 (2014).
    [43]
    G. Grahne, A. Onet, Anatomy of the chase, Fundam. Inform. 157 (2018) 221–270.
    [44]
    S. Greco, C. Molinaro, Approximate probabilistic query answering over inconsistent databases, in: Proc. ER, 2008, pp. 311–325.
    [45]
    S. Greco, C. Molinaro, Probabilistic query answering over inconsistent databases, Ann. Math. Artif. Intell. 64 (2012) 185–207.
    [46]
    S. Greco, C. Molinaro, I. Trubitsyna, Computing approximate query answers over inconsistent knowledge bases, in: Proc. IJCAI, 2018, pp. 1838–1846.
    [47]
    W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58 (1963) 13–30.
    [48]
    T. Imielinski, W. Lipski, Incomplete information in relational databases, J. ACM 31 (1984) 761–791.
    [49]
    D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Inconsistency-tolerant semantics for description logics, in: Proc. RR, 2010, pp. 103–117.
    [50]
    D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Query rewriting for inconsistent dl-lite ontologies, in: Proc. RR, 2011, pp. 155–169.
    [51]
    D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Inconsistency-tolerant query answering in ontology-based data access, J. Web Semant. 33 (2015) 3–29.
    [52]
    D. Lembo, M. Ruzzi, Consistent query answering over description logic ontologies, in: Proc. RR, 2007, pp. 194–208.
    [53]
    M. Lenzerini, Data integration: a theoretical perspective, in: Proc. PODS, 2002, pp. 233–246.
    [54]
    A. Lopatenko, L.E. Bertossi, Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics, in: Proc. ICDT, 2007, pp. 179–193.
    [55]
    T. Lukasiewicz, E. Malizia, M.V. Martinez, C. Molinaro, A. Pieris, G. Simari, Inconsistency-tolerant query answering for existential rules, Artif. Intell. 307 (2022).
    [56]
    T. Lukasiewicz, E. Malizia, C. Molinaro, Complexity of approximate query answering under inconsistency in Datalog+/, in: Proc. IJCAI, 2018, pp. 1921–1927.
    [57]
    T. Lukasiewicz, E. Malizia, C. Molinaro, Explanations for inconsistency-tolerant query answering under existential rules, in: Proc. AAAI, 2020, pp. 2909–2916.
    [58]
    T. Lukasiewicz, E. Malizia, C. Molinaro, Explanations for negative query answers under inconsistency-tolerant semantics, in: Proc. IJCAI, 2022, pp. 2705–2711.
    [59]
    T. Lukasiewicz, E. Malizia, A. Vaicenavicius, Complexity of inconsistency-tolerant query answering in datalog+/- under cardinality-based repairs, in: Proc. AAAI, 2019, pp. 2962–2969.
    [60]
    R. Peñaloza, B. Sertkaya, Understanding the complexity of axiom pinpointing in lightweight description logics, Artif. Intell. 250 (2017) 80–104.
    [61]
    R. Rosati, On the complexity of dealing with inconsistency in description logic ontologies, in: Proc. IJCAI, 2011, pp. 1057–1062.
    [62]
    J. Scott Provan, M.O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM J. Comput. 12 (1983) 777–788.
    [63]
    D. Suciu, Probabilistic databases for all, in: Proc. PODS, 2020, pp. 19–31.
    [64]
    D. Suciu, D. Olteanu, C. Ré, C. Koch, Probabilistic Databases, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2011.
    [65]
    E. Tsamoura, D. Carral, E. Malizia, J. Urbani, Materializing knowledge bases via trigger graphs, Proc. VLDB Endow. 14 (2021) 943–956.
    [66]
    L. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8 (1979) 189–201.
    [67]
    D. Welsh, A. Gale, The complexity of counting problems, in: R. Downey, D. Hirschfeldt (Eds.), Aspects of Complexity: Minicourses in Algorithmics, Complexity and Computational Algebra, Walter de Gruyter, 2001.
    [68]
    J. Widom, S. Ceri (Eds.), Active Database Systems: Triggers and Rules for Advanced Database Processing, Morgan Kaufmann, 1996.
    [69]
    J. Wijsen, Database repairing using updates, ACM Trans. Database Syst. 30 (2005) 722–768.
    [70]
    J. Wijsen, Certain conjunctive query answering in first-order logic, ACM Trans. Database Syst. 37 (2012).

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Theoretical Computer Science
    Theoretical Computer Science  Volume 935, Issue C
    Oct 2022
    200 pages

    Publisher

    Elsevier Science Publishers Ltd.

    United Kingdom

    Publication History

    Published: 31 October 2022

    Author Tags

    1. Consistent query answering
    2. Inconsistent knowledge bases
    3. Approximation algorithms
    4. Probabilistic databases

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media