Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Parameterized complexity of multicut in weighted trees

Published: 02 November 2023 Publication History

Abstract

In the Multicut problem, given an undirected graph G, a set of pairs of vertices P, and a budget k, the goal is to determine if there is a set S of at most k edges such that for each ( s, t ) ∈ P, the graph G − S has no path from s to t. In this article we first study the parameterized complexity of a variant of this problem, where the input graph is edge-weighted with arbitrary weights and the goal is to find a solution of minimum weight. Since weights are arbitrarily large, the weight of the solution is not a good choice for a parameter. The weighted problem is non-trivial even on trees and we study this problem on trees parameterized by structural parameters like the number of leaves and the request degree of every vertex. The studied parameters naturally interpolate the known polynomial time and NP-hardness results for this problem. We also give an FPT algorithm for another variant called Weighted Multicut, where given an edge-weighted tree, the goal is to find a solution of size at most k edges that minimizes the weight.

References

[1]
Arvind, Vikraman; Nedela, Roman; Ponomarenko, Ilia; Zeman, Peter (2021): Testing isomorphism of chordal graphs of bounded leafage is fixed-parameter tractable. CoRR arXiv:2107.10689 [abs] : Testing isomorphism of chordal graphs of bounded leafage is fixed-parameter tractable. https://arxiv.org/abs/2107.10689.
[2]
Hari Balakrishnan, Anand Rajaraman, C. Pandu Rangan, Connected domination and Steiner set on asteroidal triple-free graphs, in: Frank K.H.A. Dehne, Jörg-Rüdiger Sack, Nicola Santoro, Sue Whitesides (Eds.), Algorithms and Data Structures, Third Workshop, Proceedings, in: Lecture Notes in Computer Science, vol. 709, WADS '93, Montréal, Canada, August 11-13, 1993, Springer, 1993, pp. 131–141. https://doi.org/10.1007/3-540-57155-8_242.
[3]
Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, Florian Sikora, Token sliding on split graphs, Theory Comput. Syst. 65 (4) (2021) 662–686,.
[4]
Alan A. Bertossi, Dominating sets for split and bipartite graphs, Inf. Process. Lett. 19 (1) (1984) 37–40.
[5]
Nicolas Bousquet, Jean Daligault, Stéphan Thomassé, Anders Yeo, A polynomial kernel for multicut in trees, in: Susanne Albers, Jean-Yves Marion (Eds.), 26th International Symposium on Theoretical Aspects of Computer Science, Proceedings, in: LIPIcs, vol. 3, STACS 2009, February 26-28, 2009, Freiburg, Germany, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009, pp. 183–194. https://doi.org/10.4230/LIPIcs.STACS.2009.1824.
[6]
Nicolas Bousquet, Jean Daligault, Stéphan Thomassé, Multicut is FPT, SIAM J. Comput. 47 (1) (2018) 166–207,.
[7]
Maw-Shang Chang, Efficient algorithms for the domination problems on interval and circular-arc graphs, SIAM J. Comput. 27 (6) (1998) 1671–1694,.
[8]
Jianer Chen, Jia-Hao Fan, Iyad Kanj, Yang Liu, Fenghui Zhang, Multicut in trees viewed through the eyes of vertex cover, J. Comput. Syst. Sci. 78 (5) (2012) 1637–1650.
[9]
Rajesh Chitnis, László Egri, Dániel Marx, List H-coloring a graph by removing few vertices, Algorithmica 78 (1) (2017) 110–146,.
[10]
Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, Dániel Marx, Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset, SIAM J. Comput. 42 (4) (2013) 1674–1696,.
[11]
Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, Dániel Marx, Directed subset feedback vertex set is fixed-parameter tractable, ACM Trans. Algorithms 11 (4) (2015),.
[12]
Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh, Parameterized Algorithms, Springer, ISBN 978-3-319-21274-6, 2015, https://doi.org/10.1007/978-3-319-21275-3.
[13]
Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, Mihalis Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput. 23 (4) (1994) 864–894,.
[14]
Reinhard Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, 4th edition, Springer, ISBN 978-3-642-14278-9, 2012.
[15]
Pål Grønås Drange, Markus S. Dregi, Pim van 't Hof, On the computational complexity of vertex integrity and component order connectivity, Algorithmica 76 (4) (2016) 1181–1202,.
[16]
Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, Yngve Villanger, Enumerating minimal subset feedback vertex sets, Algorithmica 69 (1) (2014) 216–231,.
[17]
Fedor V. Fomin, Petr A. Golovach, Jean-Florent Raymond, On the tractability of optimization problems on H-graphs, Algorithmica 82 (9) (2020) 2432–2473,.
[18]
Galby, Esther; Marx, Daniel; Schepper, Philipp; Sharma, Roohani; Tale, Prafullkumar (2022): Domination and cut problems on chordal graphs with bounded leafage. https://arxiv.org/abs/2208.02850.
[19]
M.R. Garey, David S. Johnson, Larry J. Stockmeyer, Some simplified NP-complete problems, in: Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle, Michael A. Harrison (Eds.), Proceedings of the 6th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1974, Seattle, Washington, USA, ACM, 1974, pp. 47–63. https://doi.org/10.1145/800119.803884.
[20]
Naveen Garg, Vijay V. Vazirani, Mihalis Yannakakis, Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18 (1) (1997) 3–20,.
[21]
Petr A. Golovach, Pinar Heggernes, Pim van 't Hof, Christophe Paul, Hadwiger number of graphs with small chordality, SIAM J. Discrete Math. 29 (3) (2015) 1427–1451,.
[22]
Martin Charles Golumbic, Algorithmic Graph Theory and Perfect Graphs, Elsevier, 2004.
[23]
Jiong Guo, Rolf Niedermeier, Fixed-parameter tractability and data reduction for multicut in trees, Networks 46 (3) (2005) 124–135,.
[24]
Jiong Guo, Rolf Niedermeier, Exact algorithms and applications for tree-like weighted set cover, J. Discret. Algorithms 4 (4) (2006) 608–622,.
[25]
Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, Johannes Uhlmann, Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs, Eur. J. Oper. Res. 186 (2) (2008) 542–553,.
[26]
Meike Hatzel, Lars Jaffke, Paloma T. Lima, Tomás Masarík, Marcin Pilipczuk, Roohani Sharma, Manuel Sorge, Fixed-parameter tractability of DIRECTED MULTICUT with three terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation, in: Nikhil Bansal, Viswanath Nagarajan (Eds.), Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, SIAM, 2023, pp. 3229–3244. https://doi.org/10.1137/1.9781611977554.ch123.
[27]
Winfried Hochstättler, Johann L. Hurink, Bodo Manthey, Daniël Paulusma, Britta Peis, Georg Still, In memoriam Walter Kern, Discrete Appl. Math. 303 (2021) 2–3,.
[28]
Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos, The longest path problem has a polynomial solution on interval graphs, Algorithmica 61 (2) (2011) 320–341,.
[29]
Iyad Kanj, Guohui Lin, Tian Liu, Weitian Tong, Ge Xia, Jinhui Xu, Boting Yang, Fenghui Zhang, Peng Zhang, Binhai Zhu, Algorithms for cut problems on trees, in: International Conference on Combinatorial Optimization and Applications, Springer, 2014, pp. 283–298.
[30]
J. Mark Keil, Finding Hamiltonian circuits in interval graphs, Inf. Process. Lett. 20 (4) (1985) 201–206.
[31]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström, Solving hard cut problems via flow-augmentation, in: Dániel Marx (Ed.), Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, SIAM, 2021, pp. 149–168. https://doi.org/10.1137/1.9781611976465.11.
[32]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström, Directed flow-augmentation, in: Stefano Leonardi, Anupam Gupta (Eds.), STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20-24, 2022, ACM, 2022, pp. 938–947. https://doi.org/10.1145/3519935.3520018.
[33]
Kim, Eun Jung; Pilipczuk, Marcin; Sharma, Roohani; Wahlström, Magnus (2022): On weighted graph separation problems and flow-augmentation. CoRR arXiv:2208.14841 [abs] : On weighted graph separation problems and flow-augmentation. https://doi.org/10.48550/arXiv.2208.14841.
[34]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström, Flow-augmentation III: complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied constraints, in: Nikhil Bansal, Viswanath Nagarajan (Eds.), Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22–25, 2023, SIAM, 2023, pp. 3218–3228. https://doi.org/10.1137/1.9781611977554.ch122.
[35]
Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, Magnus Wahlström, Flow-augmentation I: directed graphs, 2023.
[36]
Athanasios L. Konstantinidis, Charis Papadopoulos, Cluster deletion on interval graphs and split related graphs, Algorithmica 83 (7) (2021) 2018–2046,.
[37]
Dieter Kratsch, Finding the minimum bandwidth of an interval graphs, Inf. Comput. 74 (2) (1987) 140–158,.
[38]
Dieter Kratsch, Lorna Stewart, Approximating bandwidth by mixing layouts of interval graphs, SIAM J. Discrete Math. 15 (4) (2002) 435–449,.
[39]
Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, Magnus Wahlström, Fixed-parameter tractability of multicut in directed acyclic graphs, SIAM J. Discrete Math. 29 (1) (2015) 122–144,.
[40]
In-Jen Lin, Terry A. McKee, Douglas B. West, The leafage of a chordal graph, Discuss. Math., Graph Theory 18 (1) (1998) 23–48,.
[41]
Daniel Lokshtanov, Dániel Marx, Clustering with local restrictions, Inf. Comput. 222 (2013) 278–292,.
[42]
Daniel Lokshtanov, M.S. Ramanujan, Parameterized tractability of multiway cut with parity constraints, in: Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, Roger Wattenhofer (Eds.), Automata, Languages, and Programming - 39th International Colloquium, Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 7391, ICALP 2012, Warwick, UK, July 9-13, 2012, Springer, 2012, pp. 750–761. https://doi.org/10.1007/978-3-642-31594-7_63.
[43]
George S. Lueker, Kellogg S. Booth, A linear time algorithm for deciding interval graph isomorphism, J. ACM 26 (2) (1979) 183–195.
[44]
Dániel Marx, Parameterized graph separation problems, Theor. Comput. Sci. 351 (3) (2006) 394–406,.
[45]
Dániel Marx, Igor Razgon, Fixed-parameter tractability of multicut parameterized by the size of the cutset, SIAM J. Comput. 43 (2) (2014) 355–388,.
[46]
Charis Papadopoulos, Restricted vertex multicut on permutation graphs, Discrete Appl. Math. 160 (12) (2012) 1791–1797,.
[47]
Charis Papadopoulos, Spyridon Tzimas, Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs, Discrete Appl. Math. 258 (2019) 204–221,.
[48]
Charis Papadopoulos, Spyridon Tzimas, Computing a minimum subset feedback vertex set on chordal graphs parameterized by leafage, in: Cristina Bazgan, Henning Fernau (Eds.), Combinatorial Algorithms - 33rd International Workshop, Proceedings, in: Lecture Notes in Computer Science, vol. 13270, IWOCA 2022, Trier, Germany, June 7-9, 2022, Springer, 2022, pp. 466–479. https://doi.org/10.1007/978-3-031-06678-8_34.
[49]
Marcin Pilipczuk, Magnus Wahlström, Directed multicut is W[1]-hard, even for four terminal pairs, ACM Trans. Comput. Theory 10 (3) (2018),.
[50]
Kevin White, Martin Farber, William R. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1) (1985) 109–124,.
[51]
Mihalis Yannakakis, Paris C. Kanellakis, Stavros S. Cosmadakis, Christos H. Papadimitriou, Cutting and partitioning a graph after a fixed pattern (extended abstract), in: Josep Díaz (Ed.), Automata, Languages and Programming, 10th Colloquium, Proceedings, in: Lecture Notes in Computer Science, vol. 154, Barcelona, Spain, July 18-22, 1983, Springer, 1983, pp. 712–722. https://doi.org/10.1007/BFb0036950.

Index Terms

  1. Parameterized complexity of multicut in weighted trees
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Theoretical Computer Science
        Theoretical Computer Science  Volume 978, Issue C
        Nov 2023
        202 pages

        Publisher

        Elsevier Science Publishers Ltd.

        United Kingdom

        Publication History

        Published: 02 November 2023

        Author Tags

        1. Multicut in weighted trees
        2. Directed flow augmentation
        3. Weighted digraph pair cut

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media