Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

A survey on road safety and traffic efficiency vehicular applications based on C-V2X technologies

Published: 01 January 2022 Publication History

Abstract

In recent years, the use of cellular network technologies to provide communication-based applications to vehicles has received considerable attention. 3GPP, the standardization body responsible for cellular networks specifications, is developing technologies to meet the requirements of vehicular communication applications, and the research community is testing and validating the ability of those technologies to implement different applications. This survey presents the body of work dealing with the use of cellular technologies to implement communication-based applications for the connected vehicle. We focus on basic and advanced road safety and traffic efficiency applications, which are critically important for the future of vehicular networks. We start by describing the different cellular-related technologies that have a role to play in providing services to the connected vehicle, propose a classification of types of communication used in vehicular applications, and then apply this classification to organize and present recent research work on the topic. Finally, we identify the main challenges in the use of cellular technologies to develop applications for the connected vehicle.

References

[1]
European Telecommunications Standards Institute (ETSI), Intelligent Transport Systems (ITS); Communications Architecture, ETSI EN 302 665 V1.1.1 September 2010.
[2]
European Telecommunications Standards Institute (ETSI), Intelligent Transport Systems (ITS); ITS-G5 Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band, ETSI EN 302 663 V1.3.1 January 2020.
[3]
J.B. Kenney, Dedicated short-range communications (DSRC) standards in the United States, Proc. IEEE 99 (7) (2011) 1162–1182,.
[4]
Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard for Information Technology– Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks– Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11-2020 September 2020.
[5]
InterCor Project (September 2016-August 2019): Interoperable Corridors deploying cooperative intelligent transport systems. https://intercor-project.eu/.
[6]
: Intelligent transportation systems joint program office – United States department of transportation, connected vehicle pilot deployment program. https://www.its.dot.gov/pilots/index.htm.
[7]
: The 3rd generation partnership project (3GPP). https://www.3gpp.org.
[8]
Federal Communications Commission (FCC), Use of the 5.850-5.925 GHz Band, FCC 20-164 November 2020.
[9]
G. Araniti, C. Campolo, M. Condoluci, A. Iera, A. Molinaro, LTE for vehicular networking: a survey, IEEE Commun. Mag. 51 (5) (2013) 148–157,.
[10]
B.M. Masini, A. Bazzi, A. Zanella, A survey on the roadmap to mandate on board connectivity and enable V2V-based vehicular sensor networks, Sensors 18 (7) (2018),.
[11]
P.K. Singh, S.K. Nandi, S. Nandi, A tutorial survey on vehicular communication state of the art, and future research directions, Veh. Commun. 18 (2019),.
[12]
M.N. Ahangar, Q.Z. Ahmed, F.A. Khan, M. Hafeez, A survey of autonomous vehicles: enabling communication technologies and challenges, Sensors 21 (3) (2021),.
[13]
S. Chen, J. Hu, Y. Shi, L. Zhao, W. Li, A vision of C-V2X: technologies, field testing, and challenges with Chinese development, IEEE Int. Things J. 7 (5) (2020) 3872–3881,.
[14]
S. Gyawali, S. Xu, Y. Qian, R.Q. Hu, Challenges and solutions for cellular based V2X communications, IEEE Commun. Surv. Tutor. 23 (1) (2021) 222–255,.
[15]
A. Bazzi, A.O. Berthet, C. Campolo, B.M. Masini, A. Molinaro, A. Zanella, On the design of sidelink for cellular V2X: a literature review and outlook for future, IEEE Access 9 (2021) 97953–97980,.
[16]
A. Alalewi, I. Dayoub, S. Cherkaoui, On 5G-V2X use cases and enabling technologies: a comprehensive survey, IEEE Access 9 (2021) 107710–107737,.
[17]
J. Jeong, Y. Shen, T. Oh, S. Céspedes, N. Benamar, M. Wetterwald, J. Härri, A comprehensive survey on vehicular networks for smart roads: a focus on IP-based approaches, Veh. Commun. 29 (2021),.
[18]
M. Lee, T. Atkison, VANET applications: past, present, and future, Veh. Commun. 28 (2021),.
[19]
Y. Toor, P. Muhlethaler, A. Laouiti, A.D. La Fortelle, Vehicle Ad Hoc networks: applications and related technical issues, IEEE Commun. Surv. Tutor. 10 (3) (2008) 74–88,.
[20]
H.H. Jeong, Y.C. Shen, J.P. Jeong, T.T. Oh, A comprehensive survey on vehicular networking for safe and efficient driving in smart transportation: a focus on systems, protocols, and applications, Veh. Commun. 31 (2021),.
[21]
A. Bazzi, G. Cecchini, M. Menarini, B.M. Masini, A. Zanella, Survey and perspectives of vehicular Wi-Fi versus sidelink cellular-V2X in the 5G era, Future Internet 11 (6) (2019),.
[22]
H. Zhou, W. Xu, J. Chen, W. Wang, Evolutionary V2X technologies toward the Internet of vehicles: challenges and opportunities, Proc. IEEE 108 (2) (2020) 308–323,.
[23]
C.R. Storck, F. Duarte-Figueiredo, A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by Internet of vehicles, IEEE Access 8 (2020) 117593–117614,.
[24]
M. Allouch, S. Kallel, A. Soua, O. Shagdar, S. Tohme, Survey on radio resource allocation in long-term evolution-vehicle, Concurr. Comput., Pract. Exp. (2021) 1–17,.
[25]
T.T. Thanh Le, S. Moh, Comprehensive survey of radio resource allocation schemes for 5G V2X communications, IEEE Access 9 (2021) 123117–123133,.
[26]
A. Masmoudi, K. Mnif, F. Zarai, A survey on radio resource allocation for V2X communication, Wirel. Commun. Mob. Comput. 2019 (3) (2019) 1–12,.
[27]
M. Muhammad, G.A. Safdar, Survey on existing authentication issues for cellular-assisted V2X communication, Veh. Commun. 12 (2018) 50–65,.
[28]
F. Tang, Y. Kawamoto, N. Kato, J. Liu, Future intelligent and secure vehicular network toward 6G: machine-learning approaches, Proc. IEEE 108 (2) (2020) 292–307,.
[29]
W. Guo, M. Fuentes, L. Christodoulou, B. Mouhouche, Roads to multimedia broadcast multicast services in 5G new radio, in: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 2018, pp. 1–5,.
[30]
D. Gomez-Barquero, J.J. Gimenez, R. Beutler, 3GPP Enhancements for Television Services: LTE-Based 5G Terrestrial Broadcast, John Wiley & Sons, Inc., 2020, pp. 1–10,.
[31]
D. Martín-Sacristán, S. Roger, D. Garcia-Roger, J.F. Monserratt, P. Spapis, A. Kousaridas, C. Zhou, Low-latency V2X communication through localized MBMS with local V2X servers coordination, in: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 2018, pp. 1–8,.
[32]
3rd Generation Partnership Project (3GPP), Technical Specification Group Core Network and Terminals; Proximity-services (ProSe) User Equipment (UE) to ProSe function protocol aspects; Stage 3 (Release 12), 3GPP TS 24.334 V12.5.0 December 2015.
[33]
X. Lin, J.G. Andrews, A. Ghosh, R. Ratasuk, An overview of 3GPP device-to-device proximity services, IEEE Commun. Mag. 52 (4) (2014) 40–48,.
[34]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Study on LTE Device to Device Proximity Services; Radio Aspects (Release 12), 3GPP TR 36.843 V12.0.1 March 2014.
[35]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Study on LTE-based V2X Services; (Release 14), 3GPP TR 36.885 V14.0.0 June 2016.
[36]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 14), 3GPP TS 36.213 V14.4.0 September 2017.
[37]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 14), 3GPP TS 36.211 V14.4.0 September 2017.
[38]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 14), 3GPP TS 36.300 V14.4.0 September 2017.
[39]
R. Molina-Masegosa, J. Gozalvez, LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications, IEEE Veh. Technol. Mag. 12 (4) (2017) 30–39,.
[40]
A. Bazzi, C. Campolo, A. Molinaro, A.O. Berthet, B.M. Masini, A. Zanella, On wireless blind spots in the C-V2X sidelink, IEEE Trans. Veh. Technol. 69 (8) (2020) 9239–9243,.
[41]
S. Bartoletti, B.M. Masini, V. Martinez, I. Sarris, A. Bazzi, Impact of the generation interval on the performance of sidelink C-V2X autonomous mode, IEEE Access 9 (2021) 35121–35135,.
[42]
M. Gonzalez-Martín, M. Sepulcre, R. Molina-Masegosa, J. Gozalvez, Analytical models of the performance of C-V2X mode 4 vehicular communications, IEEE Trans. Veh. Technol. 68 (2) (2019) 1155–1166,.
[43]
M.H. Castañeda Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin, A. Kousaridas, A tutorial on 5G NR V2X communications, IEEE Commun. Surv. Tutor. 23 (3) (2021) 1972–2026,.
[44]
Z. Ali, S. Lagén, L. Giupponi, R. Rouil, 3GPP NR V2X mode 2: overview, models and system-level evaluation, IEEE Access 9 (2021) 89554–89579,.
[45]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; Overall description of Radio Access Network (RAN) aspects for Vehicle-to-everything (V2X) based on LTE and NR (Release 16), 3GPP TR 37.985 V16.0.0 June 2020.
[46]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 16), 3GPP TS 38.321 V16.4.0 March 2021.
[47]
3rd Generation Partnership Project (3GPP), Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 16), 3GPP TS 38.214 V16.5.0 March 2021.
[48]
W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie, A survey on software-defined networking, IEEE Commun. Surv. Tutor. 17 (1) (2015) 27–51,.
[49]
W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud, Addison-Wesley Professional, 2015.
[50]
R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network function virtualization: state-of-the-art and research challenges, IEEE Commun. Surv. Tutor. 18 (1) (2016) 236–262,.
[51]
C. Campolo, A. Molinaro, A. Iera, F. Menichella, 5G network slicing for vehicle-to-everything services, IEEE Wirel. Commun. 24 (6) (2017) 38–45,.
[52]
I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, H. Flinck, Network slicing and softwarization: a survey on principles, enabling technologies, and solutions, IEEE Commun. Surv. Tutor. 20 (3) (2018) 2429–2453,.
[53]
F. Spinelli, V. Mancuso, Toward enabled industrial verticals in 5G: a survey on MEC-based approaches to provisioning and flexibility, IEEE Commun. Surv. Tutor. 23 (1) (2021) 596–630,.
[54]
European Telecommunications Standards Institute (ETSI), Multi-access Edge Computing (MEC); Framework and Reference Architecture, ETSI GS MEC 003 V2.2.1 December 2020.
[55]
3rd Generation Partnership Project (3GPP), Technical Specification Group Services and System Aspects; Service requirements for V2X services; Stage 1 (Release 16), 3GPP TS 22.185 V16.0.0 July 2020.
[56]
CAMP Vehicle Safety Communications Consortium, Vehicle Safety Communications Project Task 3 Final Report; Identify Intelligent Vehicle Safety Applications Enabled by DSRC, Technical report March 2005, https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/camp3scr.pdf.
[57]
3rd Generation Partnership Project (3GPP), Technical Specification Group Services and System Aspects; Study on LTE support for Vehicle to Everything (V2X) services (Release 14), 3GPP TR 22.885 V14.0.0 December 2015.
[58]
3rd Generation Partnership Project (3GPP), Technical Specification Group Services and System Aspects; Study on enhancement of 3GPP Support for 5G V2X Services (Release 16), 3GPP TR 22.886 V16.2.0 December 2018.
[59]
European Telecommunications Standards Institute (ETSI), Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions, ETSI TR 102.638 V1.1.1 June 2009.
[60]
European Telecommunications Standards Institute (ETSI), Intelligent Transport Systems (ITS); Vehicular communications; Basic set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, ETSI EN 302 637-2, V1.4.1 April 2019.
[61]
SAE International, V2X Communications Message Set Dictionary, SAE J2735 July 2020.
[62]
Platform for the Deployment of Cooperative Intelligent Transport Systems in the EU (C-ITS Platform), C-ITS Platform Final Report, Tech. rep., EU DG MOVE - DG Mobility and Transport January 2016, https://ec.europa.eu/transport/sites/default/files/themes/its/doc/c-its-platform-final-report-january-2016.pdf.
[63]
[64]
W. Sun, D. Yuan, E.G. Ström, F. Brännström, Cluster-based radio resource management for D2D-supported safety-critical V2X communications, IEEE Trans. Wirel. Commun. 15 (4) (2016) 2756–2769,.
[65]
A. Bazzi, B.M. Masini, A. Zanella, I. Thibault, Beaconing from connected vehicles: IEEE 802.11p vs. LTE-V2V, in: IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016, pp. 1–6,.
[66]
H. Soleimani, A. Boukerche, D2D scheme for vehicular safety applications in LTE advanced network, in: IEEE International Conference on Communications (ICC), 2017, pp. 1–6,.
[67]
H. Soleimani, A. Boukerche, A comparative study of possible solutions for transmission of vehicular safety messages in LTE-based networks, in: IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–5,.
[68]
L. Gallo, J. Haerri, Unsupervised long-term evolution device-to-device: a case study for safety-critical V2X communications, IEEE Veh. Technol. Mag. 12 (2) (2017) 69–77,.
[69]
H. Peng, D. Li, Q. Ye, K. Abboud, H. Zhao, W. Zhuang, X.S. Shen, Resource allocation for D2D-enabled inter-vehicle communications in multiplatoons, in: IEEE International Conference on Communications (ICC), 2017, pp. 1–6,.
[70]
A. Bazzi, B.M. Masini, A. Zanella, I. Thibault, On the performance of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected vehicles, IEEE Trans. Veh. Technol. 66 (11) (2017) 10419–10432,.
[71]
R. Kawasaki, H. Onishi, T. Murase, Performance evaluation on V2X communication with PC5-based and Uu-based LTE in crash warning application, in: IEEE 6th Global Conference on Consumer Electronics (GCCE), 2017, pp. 1–2,.
[72]
H. Peng, D. Li, Q. Ye, K. Abboud, H. Zhao, W. Zhuang, X. Shen, Resource allocation for cellular-based inter-vehicle communications in autonomous multiplatoons, IEEE Trans. Veh. Technol. 66 (12) (2017) 11249–11263,.
[73]
M. Gharba, H. Cao, S. Gangakhedkar, J. Eichinger, A.R. Ali, K. Ganesan, V. Jain, S. Lapoehn, T. Frankiewicz, T. Hesse, Y. Zou, C. Tang, L. Gu, 5G enabled cooperative collision avoidance: system design and field test, in: IEEE 18th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2017, pp. 1–6,.
[74]
C. Campolo, A. Molinaro, G. Araniti, A.O. Berthet, Better platooning control toward autonomous driving: an LTE device-to-device communications strategy that meets ultralow latency requirements, IEEE Veh. Technol. Mag. 12 (1) (2017) 30–38,.
[75]
V. Vukadinovic, K. Bakowski, P. Marsch, I.D. Garcia, H. Xu, M. Sybis, P. Sroka, K. Wesolowski, D. Lister, I. Thibault, 3GPP C-V2X and IEEE 802.11p for vehicle-to-vehicle communications in highway platooning scenarios, Ad Hoc Netw. 74 (2018) 17–29,.
[76]
H. Soleimani, A. Boukerche, On vehicular safety message transmissions through LTE-Advanced networks, Ad Hoc Netw. 79 (2018) 133–145,.
[77]
R. Wang, J. Wu, J. Yan, Resource allocation for D2D-enabled communications in vehicle platooning, IEEE Access 6 (2018) 50526–50537,.
[78]
S. Park, H. Yoon, B. Kim, S. Choi, FAGA: feedback-aided greedy algorithm for periodic messages in LTE V2V communications, IEEE Trans. Veh. Technol. 67 (11) (2018) 11062–11068,.
[79]
Z. Amjad, A. Sikora, B. Hilt, J. Lauffenburger, Low latency V2X applications and network requirements: performance evaluation, in: IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 220–225,.
[80]
D. Calabuig, D. Martín-Sacristán, M. Botsov, J.F. Monserrat, D. Gozálvez, Comparison of LTE centralized RRM and IEEE 802.11 decentralized RRM for ITS cooperative awareness, in: IEEE Wireless Communications and Networking Conference (WCNC), 2018, pp. 1–6,.
[81]
D. Martín-Sacristán, S. Roger, D. Garcia-Roger, J.F. Monserrat, A. Kousaridas, P. Spapis, S. Ayaz, C. Zhou, Evaluation of LTE-Advanced connectivity options for the provisioning of V2X services, in: IEEE Wireless Communications and Networking Conference (WCNC), 2018, pp. 1–6,.
[82]
G. Nardini, A. Virdis, C. Campolo, A. Molinaro, G. Stea, Cellular-V2X communications for platooning: design and evaluation, Sensors 18 (5) (2018) 1527,.
[83]
R. Molina-Masegosa, J. Gozalvez, M. Sepulcre, Configuration of the C-V2X mode 4 sidelink PC5 interface for vehicular communication, in: 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), 2018, pp. 43–48,.
[84]
S.K. Gupta, J.Y. Khan, D.T. Ngo, Cluster-based D2D architecture for safety services in vehicular ad hoc networks, in: IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2018, pp. 43–48,.
[85]
S.K. Gupta, J.Y. Khan, D.T. Ngo, A D2D multicast network architecture for vehicular communications, in: IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1–6,.
[86]
X. Peng, H. Zhou, B. Qian, K. Yu, N. Cheng, X. Shen, Security-aware resource sharing for D2D enabled multiplatooning vehicular communications, in: IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–6,.
[87]
R. Geng, H. Ren, J. Yan, User satisfaction-aware resource allocation for 5G green vehicle platooning, in: International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2019, pp. 868–873,.
[88]
S. Hegde, O. Blume, R. Shrivastava, H. Bakker, Enhanced resource scheduling for platooning in 5G V2X systems, in: IEEE 2nd 5G World Forum (5GWF), 2019, pp. 108–113,.
[89]
S. Mignardi, C. Buratti, A. Bazzi, R. Verdone, Trajectories and resource management of flying base stations for C-V2X, Sensors 19 (4) (2019) 811,.
[90]
F.A. Schiegg, N. Brahmi, I. Llatser, Analytical performance evaluation of the collective perception service in C-V2X mode 4 networks, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 181–188,.
[91]
S. Sabeeh, P. Sroka, K. Wesołowski, Estimation and reservation for autonomous resource selection in C-V2X mode 4, in: IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2019, pp. 1–6,.
[92]
T. Shimizu, H. Lu, J. Kenney, S. Nakamura, Comparison of DSRC and LTE-V2X PC5 mode 4 performance in high vehicle density scenarios, in: 26th ITS World Congress, 2019, pp. 1–10.
[93]
CAMP C-V2X Consortium, C-V2X Performance Assessment Project, Report December 2019, https://www.campllc.org/project-cellular-v2x-device-to-device-communication-c-v2x/.
[94]
5G Automotive Association (5GAA), V2X Functional and Performance Test Report; Test Procedures and Results, Technical report April 2019, https://5gaa.org/wp-content/uploads/2019/06/5GAA_P-190033_V2X-Functional-and-Performance-Test-Report_final-1.pdf.
[95]
I. Llatser, T. Michalke, M. Dolgov, F. Wildschütte, H. Fuchs, Cooperative automated driving use cases for 5G V2X communication, in: IEEE 2nd 5G World Forum (5GWF), 2019, pp. 120–125,.
[96]
R. Molina-Masegosa, J. Gozalvez, M. Sepulcre, Comparison of IEEE 802.11p and LTE-V2X: an evaluation with periodic and aperiodic messages of constant and variable size, IEEE Access 8 (2020) 121526–121548,.
[97]
T. Hirai, T. Murase, Performance evaluations of PC5-based cellular-V2X mode 4 for feasibility analysis of driver assistance systems with crash warning, Sensors 20 (10) (2020) 2950,.
[98]
F. Romeo, C. Campolo, A. Molinaro, A.O. Berthet, Asynchronous traffic on the sidelink of 5G V2X, in: IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1–6,.
[99]
F. Romeo, C. Campolo, A. Molinaro, A.O. Berthet, DENM repetitions to enhance reliability of the autonomous mode in NR V2X sidelink, in: IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1–5,.
[100]
M. Niebisch, T. Deinlein, D. Pfaller, R. German, A. Djanatliev, Impact of the communication direction on the reliability of vehicle-to-everything (V2X) communications, in: IEEE Vehicular Networking Conference (VNC), 2020, pp. 1–7,.
[101]
T. Shimizu, B. Cheng, H. Lu, J. Kenney, Comparative analysis of DSRC and LTE-V2X PC5 mode 4 with SAE congestion control, in: IEEE Vehicular Networking Conference (VNC), 2020, pp. 1–8,.
[102]
J. Choi, H. Kim, A QoS-aware congestion control scheme for C-V2X safety communications, in: IEEE Vehicular Networking Conference (VNC), 2020, pp. 1–4,.
[103]
Connected Vehicle to Everything of Tomorrow (ConVeX), Final Report on Field Test and Evaluation Results, Technical Report D7.1 V1.0 March 2020, https://convex-project.de/onewebmedia/D7.1_Final_Report_Field.pdf.
[104]
A. Lekidis, F. Bouali, C-V2X network slicing framework for 5G-enabled vehicle platooning applications, in: IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–7,.
[105]
M. Segata, P. Arvani, R.L. Cigno, A critical assessment of C-V2X resource allocation scheme for platooning applications, in: 16th Annual Conference on Wireless On-Demand Network Systems and Services Conference (WONS), 2021, pp. 1–8,.
[106]
S. Hegde, L. Shi, N.J. Hernández Marcano, R. Shrivastava, O. Blume, R.H. Jacobsen, Sidelink group resource scheduling for platoons in cellular vehicle-to-vehicle communications, in: IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–5,.
[107]
F. Poli, B. Denis, V. Mannoni, V. Berg, D. Martín-Sacristán, D. Garcia-Roger, J.F. Monserrat, Evaluation of C-V2X sidelink for cooperative lane merging in a cross-border highway scenario, in: IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–5,.
[108]
C. Perfecto, J. Del Ser, M. Bennis, M.N. Bilbao, Beyond WYSIWYG: sharing contextual sensing data through mmWave V2V communications, in: European Conference on Networks and Communications (EuCNC), 2017, pp. 1–6,.
[109]
M. Thomas, R.M. Edwards, Z. Wang, Consideration of IEEE 802.11p and proposed 5G for holograms in vehicular communication, in: 12th European Conference on Antennas and Propagation (EuCAP), 2018, pp. 1–5,.
[110]
M. Kutila, P. Pyykonen, Q. Huang, W. Deng, W. Lei, E. Pollakis, C-V2X supported automated driving, in: IEEE International Conference on Communications Workshops (ICC Workshops), 2019, pp. 1–5,.
[111]
H. Khan, P. Luoto, M. Bennis, M. Latva-aho, On the application of network slicing for 5G-V2X, in: 24th European Wireless Conference, 2018, pp. 1–6.
[112]
X. Wang, Z. Ning, X. Hu, E.C. Ngai, L. Wang, B. Hu, R.Y.K. Kwok, A city-wide real-time traffic management system: enabling crowdsensing in social Internet of vehicles, IEEE Commun. Mag. 56 (9) (2018) 19–25,.
[113]
S.K. Gupta, J.Y. Khan, D.T. Ngo, Clustered multicast protocols for warning message transmissions in a VANET, in: IEEE Vehicular Networking Conference (VNC), 2019, pp. 1–8,.
[114]
S.A. Alghamdi, Novel path similarity aware clustering and safety message dissemination via mobile gateway selection in cellular 5G-based V2X and D2D communication for urban environment, Ad Hoc Netw. 103 (2020),.
[115]
M. Emara, M.C. Filippou, D. Sabella, MEC-assisted end-to-end latency evaluations for C-V2X communications, in: European Conference on Networks and Communications (EuCNC), 2018, pp. 1–9,.
[116]
Q.-H. Nguyen, M. Morold, K. David, F. Dressler, Car-to-Pedestrian communication with MEC-support for adaptive safety of vulnerable road users, Comput. Commun. 150 (2020) 83–93,.
[117]
Z. Xu, X. Li, X. Zhao, M.H. Zhang, Z. Wang, DSRC versus 4G-LTE for connected vehicle applications: a study on field experiments of vehicular communication performance, J. Adv. Transp. (2017),.
[118]
Q. Guo, L. Li, X. (Jeff) Ban, Urban traffic signal control with connected and automated vehicles: a survey, Transp. Res., Part C, Emerg. Technol. 101 (2019) 313–334,.
[119]
L. Miao, J.J. Virtusio, K.-L. Hua, PC5-based cellular-V2X evolution and deployment, Sensors 21 (3) (2021) 843,.
[120]
Sabella, D.; et al. (December 2017): Toward fully connected vehicles: edge computing for advanced automotive communications. White paper, 5G Automotive Association (5GAA) http://5gaa.org/wp-content/uploads/2017/12/5GAA_T-170219-whitepaper-EdgeComputing_5GAA.pdf.
[121]
A. Napolitano, G. Cecchetti, F. Giannone, A.L. Ruscelli, F. Civerchia, K. Kondepu, L. Valcarenghi, P. Castoldi, Implementation of a MEC-based vulnerable road user warning system, in: AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), 2019, pp. 1–6,.
[122]
L. Nkenyereye, C.H. Liu, J. Song, Towards secure and privacy preserving collision avoidance system in 5G fog based Internet of vehicles, Future Gener. Comput. Syst. 95 (2019) 488–499,.
[123]
L. Sequeira, A. Szefer, J. Slome, T. Mahmoodi, A lane merge coordination model for a V2X scenario, in: European Conference on Networks and Communications (EuCNC), 2019, pp. 198–203,.
[124]
G. Avino, P. Bande, P.A. Frangoudis, C. Vitale, C. Casetti, C.F. Chiasserini, K. Gebru, A. Ksentini, G. Zennaro, A MEC-based extended virtual sensing for automotive services, IEEE Trans. Netw. Serv. Manag. 16 (4) (2019) 1450–1463,.
[125]
S. Saxena, I.K. Isukapati, Simulated basic safety message: concept application, in: IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 2450–2456,.
[126]
F. Giannone, P.A. Frangoudis, A. Ksentini, L. Valcarenghi, Orchestrating heterogeneous MEC-based applications for connected vehicles, Comput. Netw. 180 (2020),.
[127]
S. Barmpounakis, G. Tsiatsios, M. Papadakis, E. Mitsianis, N. Koursioumpas, N. Alonistioti, Collision avoidance in 5G using MEC and NFV: the vulnerable road user safety use case, Comput. Netw. 172 (2020),.
[128]
M. Malinverno, G. Avino, C. Casetti, C.F. Chiasserini, F. Malandrino, S. Scarpina, Edge-based collision avoidance for vehicles and vulnerable users: an architecture based on MEC, IEEE Veh. Technol. Mag. 15 (1) (2020) 27–35,.
[129]
Y.-Y. Tseng, P.-M. Hsu, J.-J. Chen, Y.-C. Tseng, Computer vision-assisted instant alerts in 5G, in: 29th International Conference on Computer Communications and Networks (ICCCN), 2020, pp. 1–9,.
[130]
S. Fu, W. Zhang, Z. Jiang, A network-level connected autonomous driving evaluation platform implementing C-V2X technology, China Commun. 18 (6) (2021) 77–88,.
[131]
K. Kang, Y. Bichiou, H.A. Rakha, A. Elbery, H. Yang, Development and testing of a connected vehicle optimal lane selection algorithm, in: IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 1531–1536,.
[132]
Z. Li, T. Yu, R. Fukatsu, G.K. Tran, K. Sakaguchi, Proof-of-concept of a SDN based mmWave V2X network for safe automated driving, in: IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6,.
[133]
L. Ding, Y. Wang, P. Wu, L. Li, J. Zhang, Kinematic information aided user-centric 5G vehicular networks in support of cooperative perception for automated driving, IEEE Access 7 (2019) 40195–40209,.
[134]
B. Chang, J. Chiou, Cloud computing-based analyses to predict vehicle driving shockwave for active safe driving in intelligent transportation system, IEEE Trans. Intell. Transp. Syst. 21 (2) (2020) 852–866,.
[135]
R. Aslani, E. Saberinia, M. Rasti, Resource allocation for cellular V2X networks mode-3 with underlay approach in LTE-V standard, IEEE Trans. Veh. Technol. 69 (8) (2020) 8601–8612,.
[136]
C. Guo, L. Liang, G.Y. Li, Resource allocation for high-reliability low-latency vehicular communications with packet retransmission, IEEE Trans. Veh. Technol. 68 (7) (2019) 6219–6230,.
[137]
F.A. Schiegg, I. Llatser, D. Bischoff, G. Volk, Collective perception: a safety perspective, Sensors 21 (1) (2021),.
[138]
European Telecommunications Standards Institute (ETSI), Intelligent Transport Systems (ITS); Congestion Control Mechanisms for the C-V2X PC5 interface; Access layer part, ETSI TS 103 574 V1.1.1 November 2018.
[139]
G. Bansal, J.B. Kenney, C.E. Rohrs, LIMERIC: a linear adaptive message rate algorithm for DSRC congestion control, IEEE Trans. Veh. Technol. 62 (9) (2013) 4182–4197,.
[140]
O. Amador, I. Soto, M. Calderón, M. Urueña, Experimental evaluation of the ETSI DCC adaptive approach and related algorithms, IEEE Access 8 (2020) 49798–49811,.
[141]
European Telecommunications Standards Institute (ETSI), Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality, EN 302 636-4-1 V1.4.1 January 2020.
[142]
5G Automotive Association (5GAA) Working Group 5, List of C-V2X Devices, Technical report November 2020, https://5gaa.org/wp-content/uploads/2020/11/5GAA_List-of-C-V2X-Devices.pdf.
[143]
R. Riebl, H.-J. Günther, C. Facchi, L. Wolf, Artery: extending Veins for VANET applications, in: International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2015, pp. 450–456,.
[144]
F. Hagenauer, F. Dressler, C. Sommer Poster, A simulator for heterogeneous vehicular networks, in: 2014 IEEE Vehicular Networking Conference (VNC), 2014, pp. 185–186,.
[145]
A. Virdis, G. Stea, G. Nardini, Simulating LTE/LTE-Advanced networks with SimuLTE, in: M.S. Obaidat, T. Ören, J. Kacprzyk, J. Filipe (Eds.), Simulation and Modeling Methodologies, Technologies and Applications, Springer International Publishing, Cham, 2015, pp. 83–105.
[146]
McCarthy, B.; Burbano-Abril, A.; Licea, V.R.; O'Driscoll, A. (2021): OpenCV2X: modelling of the V2X cellular sidelink and performance evaluation for aperiodic traffic. arXiv:2103.13212.
[147]
A. Hegde, A. Festag, Artery-C: an OMNeT++ based discrete event simulation framework for cellular V2X, in: Proceedings of the 23rd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM '20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 47–51,.
[148]
F. Eckermann, M. Kahlert, C. Wietfeld, Performance analysis of C-V2X mode 4 communication introducing an open-source C-V2X simulator, in: 2019 IEEE 90th Vehicular Technology Conference (VTC-Fall), Honolulu, Hawaii, USA, 2019.
[149]
G. Cecchini, A. Bazzi, B.M. Masini, A. Zanella, LTEV2Vsim: an LTE-V2V simulator for the investigation of resource allocation for cooperative awareness, in: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017, pp. 80–85,.
[150]
K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, Y. Zhou, Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions, IEEE Commun. Surv. Tutor. 17 (4) (2015) 2377–2396,.
[151]
K. Abboud, H.A. Omar, W. Zhuang, Interworking of DSRC and cellular network technologies for V2X communications: a survey, IEEE Trans. Veh. Technol. 65 (12) (2016) 9457–9470,.
[152]
S. Ucar, S.C. Ergen, O. Ozkasap, Multihop-cluster-based IEEE 802.11p and LTE hybrid architecture for VANET safety message dissemination, IEEE Trans. Veh. Technol. 65 (4) (2016) 2621–2636,.
[153]
W. Qi, B. Landfeldt, Q. Song, L. Guo, A. Jamalipour, Traffic differentiated clustering routing in DSRC and C-V2X hybrid vehicular networks, IEEE Trans. Veh. Technol. 69 (7) (2020) 7723–7734,.
[154]
Z.H. Mir, J. Toutouh, F. Filali, Y.-B. Ko, Enabling DSRC and C-V2X integrated hybrid vehicular networks: architecture and protocol, IEEE Access 8 (2020) 180909–180927,.
[155]
R. Jacob, M. Gay, M. Dod, S. Lorenz, A. Jungmann, L. Franke, M. Philipp, M. Kloeppel-Gersdorf, M. Haberjahn, E. Gruschka, G. Fettweis, IVS-KOM: a reference platform for heterogeneous ITS communications, in: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020, pp. 1–7,.
[156]
P. Roux, V. Mannoni, Performance evaluation for co-channel coexistence between ITS-G5 and LTE-V2X, in: 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020, pp. 1–5,.
[157]
M. Usman, M. Qaraqe, M.R. Asghar, A.A. Gebremariam, I.S. Ansari, F. Granelli, Q.H. Abbasi, A business and legislative perspective of V2X and mobility applications in 5G networks, IEEE Access 8 (2020) 67426–67435,.

Cited By

View all
  • (2024)Simulating Data Flows of Very Large Scale Intelligent Transportation SystemsProceedings of the 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation10.1145/3615979.3656062(98-107)Online publication date: 24-Jun-2024
  • (2024)Resource allocation in V2X communicationPhysical Communication10.1016/j.phycom.2024.10235164:COnline publication date: 17-Jul-2024
  • (2023)Comparative Evaluation of Host-Based Translator Mechanisms for IPv4-IPv6 Communication Performance Analysis With Different Routing ProtocolsInternational Journal of Cloud Applications and Computing10.4018/IJCAC.33276513:1(1-26)Online publication date: 14-Nov-2023
  • Show More Cited By

Index Terms

  1. A survey on road safety and traffic efficiency vehicular applications based on C-V2X technologies
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Vehicular Communications
        Vehicular Communications  Volume 33, Issue C
        Jan 2022
        285 pages
        ISSN:2214-2096
        EISSN:2214-2096
        Issue’s Table of Contents

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 January 2022

        Author Tags

        1. Safety and traffic efficiency applications
        2. C-V2X
        3. 5G
        4. Connected vehicle

        Qualifiers

        • Review-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Oct 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Simulating Data Flows of Very Large Scale Intelligent Transportation SystemsProceedings of the 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation10.1145/3615979.3656062(98-107)Online publication date: 24-Jun-2024
        • (2024)Resource allocation in V2X communicationPhysical Communication10.1016/j.phycom.2024.10235164:COnline publication date: 17-Jul-2024
        • (2023)Comparative Evaluation of Host-Based Translator Mechanisms for IPv4-IPv6 Communication Performance Analysis With Different Routing ProtocolsInternational Journal of Cloud Applications and Computing10.4018/IJCAC.33276513:1(1-26)Online publication date: 14-Nov-2023
        • (2023)A Survey on Integration of Network Communication into Vehicle Real-Time Motion ControlIEEE Communications Surveys & Tutorials10.1109/COMST.2023.329538425:4(2755-2790)Online publication date: 1-Oct-2023
        • (2023)Revolutionizing Intelligent Transportation Systems with Cellular Vehicle-to-Everything (C-V2X) technologyVehicular Communications10.1016/j.vehcom.2023.10063843:COnline publication date: 1-Oct-2023
        • (2023)Sub-6 GHz V2X-assisted MmWave optimal scheduling for vehicular networksVehicular Communications10.1016/j.vehcom.2023.10061041:COnline publication date: 5-Jun-2023
        • (2023)Envelope distribution and Doppler spectrum of V2V channels at 5.9 GHz in mountainous roadsVehicular Communications10.1016/j.vehcom.2022.10057039:COnline publication date: 1-Feb-2023
        • (2023)Studying and improving the performance of ETSI ITS contention-based forwarding (CBF) in urban and highway scenariosComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2023.109899233:COnline publication date: 1-Sep-2023
        • (2022)Evaluation platform for 5G vehicular communicationsVehicular Communications10.1016/j.vehcom.2022.10053738:COnline publication date: 1-Dec-2022
        • (2022)On the design and implementation of an on-board test bed system for V2V road hazard signalingProcedia Computer Science10.1016/j.procs.2022.07.017203:C(119-126)Online publication date: 1-Jan-2022

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media