Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Discovering shared conceptualizations in folksonomies

Published: 01 February 2008 Publication History

Abstract

Social bookmarking tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. Unlike ontologies, shared conceptualizations are not formalized, but rather implicit. We present a new data mining task, the mining of all frequent tri-concepts, together with an efficient algorithm, for discovering these implicit shared conceptualizations. Our approach extends the data mining task of discovering all closed itemsets to three-dimensional data structures to allow for mining folksonomies. We provide a formal definition of the problem, and present an efficient algorithm for its solution. Finally, we show the applicability of our approach on three large real-world examples.

References

[1]
Agrawal, R., Imielinski, T. and Swami, A., Mining association rules between sets of items in large databases. In: Proceedings of SIGMOD, ACM Press.
[2]
Agrawal, R. and Srikant, R., Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB'94), Morgan Kaufmann.
[3]
Agrawal, R. and Srikant, R., Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering (ICDE'95), IEEE Computer Society Press.
[4]
A. Arnauld, P. Nicole, La logique ou l'art de penser-contenant, outre les règles communes, plusieurs observations nouvelles, propres í former le jugement, Ch. Saveux, 1668.
[5]
Bastide, Y., Taouil, R., Pasquier, N., Stumme, G. and Lakhal, L., Mining frequent patterns with counting inference. SIGKDD Explorations Spec. Issue Scalable Algorithms. v2 i2. 71-80.
[6]
Bayardo, R.J., Efficiently mining long patterns from databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data (SIGMOD'98), ACM Press.
[7]
Biedermann, K., How triadic diagrams represent conceptual structures. In: Lukose, D., Delugach, H.S., Keeler, M., Searle, L., Sowa, J.F. (Eds.), Conceptual Structures: Fulfilling Peirce's Dream, No. 1257 in LNAI, Springer, Heidelberg.
[8]
Biedermann, K., Triadic Galois connections. In: Denecke, K., Lüders, O. (Eds.), General Algebra and Applications in Discrete Mathematics, Shaker Verlag, Aachen.
[9]
Biedermann, K., Powerset trilattices. In: Mugnier, M., Chein, M. (Eds.), Conceptual Structures: Theory, Tools and Applications, vol. 1453 of Lecture Notes in Computer Science, Springer.
[10]
J.-F. Boulicaut, A. Bykowski, C. Rigotti, Approximation of frequency queris by means of free-sets, in: Principles of Data Mining and Knowledge Discovery, 2000. URL http://citeseer.ist.psu.edu/boulicaut00approximation.html.
[11]
Brin, S. and Page, L., The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN Syst. v30 i1-7. 107-117.
[12]
In: Buitelaar, P., Cimiano, P., Magnini, B. (Eds.), Ontology Learning from Text: Methods, Evaluation and Applications, vol. 123 of Frontiers in Artificial Intelligence, IOS Press.
[13]
A. Bykowski, C. Rigotti, A condensed representation to find frequent patterns, in: PODS, 2001. URL http://dblp.uni-trier.de/db/conf/pods/pods2001.html#BykowskiR01.
[14]
T. Calders, B. Goethals, Mining all non-derivable frequent itemsets, in: PKDD, 2002. URL http://dblp.uni-trier.de/db/conf/pkdd/pkdd2002.html#CaldersG02.
[15]
Carpineto, C. and Romano, G., GALOIS: An order-theoretic approach to conceptual clustering. In: Machine Learning Proceedings of ICML, Morgan Kaufmann Publications.
[16]
Carpineto, C. and Romano, G., Concept Data Analysis. 2004. Wiley.
[17]
C. Cattuto, V. Loreto, L. Pietronero, Collaborative tagging and semiotic dynamics, arXiv:cs.CY/0605015 (May 2006). URL http://arxiv.org/abs/cs/0605015.
[18]
P. Cimiano, Ontology Learning and Population from Text: Algorithms, Evaluation and Applications, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. URL http://portal.acm.org/citation.cfm?id=1177318.
[19]
F. Dau, R. Wille, On the modal unterstanding of triadic contexts, in: R. Decker, W. Gaul (Eds.), Classification and Information Processing at the Turn of the Millenium, Proceedings of Gesellschaft für Klassifikation, 2001.
[20]
H. Dicky, C. Dony, M. Huchard, T. Libourel, On automatic class insertion with overloading, in: OOPSLA, 1996.
[21]
Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P. and Tomkins, A., Visualizing tags over time. In: Proceedings of the 15th International WWW Conference,
[22]
Ganter, B., Algorithmen zur formalen Begriffsanalyse. In: Ganter, B., Wille, R., Wolff, K.E. (Eds.), Beiträge zur Begriffsanalyse, B.I.-Wissenschaftsverlag, Mannheim. pp. 241-254.
[23]
Ganter, B. and Obiedkov, S.A., Implications in triadic contexts. In: Conceptual Structures at Work: 12th International Conference on Conceptual Structures, vol. 3127 of Lecture Notes in Computer Science, Springer.
[24]
In: Ganter, B., Stumme, G., Wille, R. (Eds.), Formal Concept Analysis-Foundations and Applications, vol. 3626 of LNAI, Springer, Heidelberg.
[25]
Ganter, B. and Wille, R., Formal Concept Analysis: Mathematical Foundations. 1999. Springer.
[26]
German Federal Office for Information Security, IT Baseline Protection Manual, October 2003. URL http://www.bsi.de/gshb/.
[27]
Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A. and Chau, T., Design of class hierarchies based on concept (galois) lattices. TAPOS. v4 i2. 117-134.
[28]
S. Golder, B. A. Huberman, The structure of collaborative tagging systems, Tech. rep., Information Dynamics Lab, HP Labs, August 2005. URL http://arxiv.org/abs/cs.DL/0508082.
[29]
Gruber, T.R., Towards principles for the design of ontologies used for knowledge sharing. In: Guarino, N., Poli, R. (Eds.), Formal Ontology in Conceptual Analysis and Knowledge Representation, Kluwer Academic Publishers, Deventer, The Netherlands.
[30]
H. Halpin, V. Robu, H. Shepard, The dynamics and semantics of collaborative tagging, Proceedings of the 1st Semantic Authoring and Annotation Workshop (SAAW'06), 2006. URL http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-209/saaw06-full01-halpin.pdf.
[31]
T. Hammond, T. Hannay, B. Lund, J. Scott, Social Bookmarking Tools (I): A General Review, D-Lib Magazine 11 (4) (2005).
[32]
P. Heymann, H. Garcia-Molina, Collaborative creation of communal hierarchical taxonomies in social tagging systems, Tech. Rep. 2006-10, Computer Science Department, April 2006. URL http://dbpubs.stanford.edu:8090/pub/2006-10.
[33]
Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G., BibSonomy: a social bookmark and publication sharing system. In: Proceedings of the Conceptual Structures Tool Interoperability Workshop at the 14th International Conference on Conceptual Structures,
[34]
Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G., Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (Eds.), The Semantic Web: Research and Applications, vol. 4011 of LNAI, Springer, Heidelberg.
[35]
Jäschke, R., Hotho, A., Schmitz, C., Ganter, B. and Stumme, G., Trias-an algorithm for mining iceberg tri-lattices. In: Proceedings of the Sixth IEEE International Conference on Data Mining (ICDM06), IEEE Computer Society, Hong Kong.
[36]
Jäschke, R., Hotho, A., Schmitz, C. and Stumme, G., Analysis of the publication sharing behaviour in BibSonomy. In: Priss, U., Polovina, S., Hill, R. (Eds.), Proceedings of the 15th International Conference on Conceptual Structures (ICCS 2007), vol. 4604 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, Heidelberg.
[37]
Kamber, M., Han, J. and Chiang, Y., Metarule-guided mining of multi-dimensional association rules using data cubes. In: Proceeding of the Third KDD, International Conference,
[38]
Krolak-Schwerdt, S., Orlik, P. and Ganter, B., TRIPAT: a model for analyzing three-mode binary data. In: Bock, H.H., Lenski, W., Richter, M.M. (Eds.), Studies in Classification, Data Analysis, and Knowledge Organization, vol. 4 of Information systems and data analysis, Springer, Berlin. pp. 298-307.
[39]
R. Lambiotte, M. Ausloos, Collaborative tagging as a tripartite network, arXiv:cs.DS/0512090, December 2005. URL http://arxiv.org/abs/cs.DS/0512090.
[40]
Lehmann, F. and Wille, R., A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (Eds.), Conceptual Structures: Applications, Implementation and Theory, vol. 954 of Lecture Notes in Artificial Intelligence, Springer Verlag.
[41]
Lent, B., Agrawal, R. and Srikant, R., . In: Proceedings of the Third International Conference on Knowledge Discovery Data mining (KDD'97), AAAI Press.
[42]
Lin, D. and Kedem, M., A new algorithm for discovering the maximum frequent set. In: Proceedings of the Sixth International Conference on Extending Database Technology (EDBT),
[43]
B. Lund, T. Hammond, M. Flack, T. Hannay, Social Bookmarking Tools (II): A Case Study-Connotea, D-Lib Magazine 11 (4) (2005).
[44]
Maedche, A. and Staab, S., Ontology learning for the semantic web. IEEE Intell. Syst. v16 i2. 72-79.
[45]
Mannila, H., Methods and problems in data mining. In: Proceedings of the 6th biennial International Conference on Database Theory (ICDT'97), Lecture Notes in Computer Science, vol. 1186, Springer-Verlag.
[46]
A. Mathes, Folksonomies-Cooperative Classification and Communication Through Shared Metadata, December 2004. URL http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html.
[47]
Mika, P., Ontologies are us: a unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (Eds.), ISWC 2005, vol. 3729 of LNCS, Springer-Verlag.
[48]
Mineau, G. and Godin, G.R., Automatic structuring of knowledge bases by conceptual clustering. IEEE Trans. Knowl. Data Eng. v7 i5. 824-829.
[49]
Missikoff, M. and Scholl, M., An algorithm for insertion into a lattice: application to type classification. In: Proceedings of Third International Conference on FODO, vol. 367 of LNCS, Springer, Heidelberg.
[50]
N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Closed set based discovery of small covers for association rules, in: Actes des 15èmes journées Bases de Données Avancées (BDA'99), 1999.
[51]
Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L., Discovering frequent closed itemsets for association rules. In: Proceedings of the Seventh Biennial International Conference on Database Theory (ICDT'99), Lecture Notes in Computer Science, vol. 1540, Springer-Verlag.
[52]
Pasquier, N., Taouil, R., Bastide, Y., Stumme, G. and Lakhal, L., Generating a condensed representation for association rules. J. Intell. Inf. Syst. (JIIS). v24 i1. 29-60.
[53]
Pei, J., Han, J. and Mao, R., Closet: an efficient algorithm for mining frequent closed itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
[54]
Peirce, C.S., Collected Papers. 1931-1935. Harvard Universit Press, Cambridge.
[55]
F. Rioult, Extraction de connaissances dans les bases de donnees comportant des valeurs manquantes ou un grand nombre d'attributs, Ph.D. Thesis, Université de Caen Basse-Normandie, 2005.
[56]
Schmitt, I. and Saake, G., Merging inheritance hierarchies for database integration. In: Proceedings of Third IFCIS International Conference on Cooperative Information Systems, New York City, Nework USA.
[57]
Schmitz, C., Hotho, A., Jäschke, R. and Stumme, G., Mining association rules in folksonomies. In: Batagelj, V., Bock, H.-H., Ferligoj, A., ¿iberna, A. (Eds.), Data Science and Classification: Proceedings of the 10th IFCS Conference, Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Berlin, Heidelberg.
[58]
P. Schmitz, Inducing ontology from flickr tags, in: Collaborative Web Tagging Workshop at WWW2006, Edinburgh, Scotland, 2006. URL http://www.ibiblio.org/www_tagging/2006/22.pdf.
[59]
Silverstein, C., Brin, S. and Motwani, R., Beyond market baskets: generalizing association rules to dependence rules. Data Min. Knowl. Discovery. v2 i1. 39-68.
[60]
E. Speller, Library student journal: Collaborative tagging, folksonomies, distributed classification or ethnoclassification: a literature review, February 2007. URL http://informatics.buffalo.edu/org/lsj/articles/speller_2007_2_collaborative.php.
[61]
S. Staab, S. Santini, F. Nack, L. Steels, A. Maedche, Emergent semantics, Intell. Syst. IEEE 17 (1) (2002) 78-86 (see also IEEE Expert). URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=988491.
[62]
Steels, L., The origins of ontologies and communication conventions in multi-agent systems. Autonomous Agents Multi-Agent Syst. v1 i2. 169-194.
[63]
Strahringer, S. and Wille, R., Conceptual clustering via convex-ordinal structures. In: Opitz, O., Lausen, B., Klar, R. (Eds.), Information and Classification, Springer, Berlin-Heidelberg.
[64]
G. Stumme, Conceptual knowledge discovery with frequent concept lattices, FB4-Preprint 2043, TU Darmstadt, 1999. URL http://www.kde.cs.uni-kassel.de/stumme/papers/1999/P2043.pdf.
[65]
Stumme, G., Begriffliche Wissensverarbeitung-Methoden und Anwendungen. 2000. Springer, Heidelberg.
[66]
Stumme, G., Off to new shores-conceptual knowledge discovery and processing. Int. J. Hum. Comput. Stud. (IJHCS). v59 i3. 287-325.
[67]
Stumme, G., A finite state model for on-line analytical processing in triadic contexts. In: Ganter, B., Godin, R. (Eds.), Proceedings of the 3rd International Conference on Formal Concept Analysis, vol. 3403 of Lecture Notes in Computer Science, Springer.
[68]
Stumme, G., Taouil, R., Bastide, Y., Pasqier, N. and Lakhal, L., Computing iceberg concept lattices with titanic. J. Knowl. Data Eng. v42 i2. 189-222.
[69]
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N. and Lakhal, L., Intelligent structuring and reducing of association rules with formal concept analysis. In: Baader, F., Brewker, G., Eiter, T. (Eds.), KI 2001: Advances in Artificial Intelligence, vol. 2174 of LNAI, Springer, Heidelberg.
[70]
H. Söll, Begriffliche Analyse triadischer Daten: Das IT-Grundschutzhandbuch des Bundesamts für Sicherheit in der Informationstechnik, Diploma Thesis, FB Mathematik, TU Darmstadt, Darmstadt, April 1998.
[71]
R. Taouil, Algorithmique du treillis des fermés: application í l'analyse formelle de concepts et aux bases de données, Ph.D. Thesis, Université de Clermont-Ferrand II, 2000.
[72]
Waiyamai, K., Taouil, R. and Lakhal, L., Towards an object database approach for managing concept lattices. In: Proceedings of 16th International Conference on Conceptual Modeling, vol. 1331 of LNCS, Springer, Heidelberg.
[73]
T.V. Wal, Folksonomy, 2007. URL http://vanderwal.net/folksonomy.html.
[74]
Wille, R., Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (Ed.), Ordered Sets, Reidel, Dordrecht-Boston.
[75]
Wille, R., The basic theorem of Triadic Concept Analysis. Order. v12. 149-158.
[76]
Wille, R. and Zickwolff, M., Grundlagen einer triadischen Begriffsanalyse. In: Stumme, G., Wille, R. (Eds.), Begriffliche Wissensverarbeitung. Methoden und Anwendungen, Springer-Verlag, Berlin-Heidelberg.
[77]
Yahia, A., Lakhal, L., Bordat, J.P. and Cicchetti, R., io2: An algorithmic method for building inheritance graphs in object database design. In: Proceedings of 15th International Conference on Conceptual Modeling, vol. 1157 of LNCS, Springer, Heidelberg.
[78]
M.J. Zaki, C.-J. Hsiao, Charm: an efficient algorithm for closed association rule mining. technical report 99-10, Tech. rep., Computer Science Dept., Rensselaer Polytechnic, October 1999.
[79]
Zaki, M.J., Parthasarathy, S., Ogihara, M. and Li, W., New algorithms for fast discovery of association rules. In: Proceedings of the Third International Conference on Knowledge Discovery and Data mining (KDD'97), AAAI Press.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Web Semantics: Science, Services and Agents on the World Wide Web
Web Semantics: Science, Services and Agents on the World Wide Web  Volume 6, Issue 1
February, 2008
98 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 February 2008

Author Tags

  1. Folksonomies
  2. Formal Concept Analysis
  3. Tagging

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Graph-Based Recommendation System Enhanced by Community DetectionScientific Programming10.1155/2023/50737692023Online publication date: 1-Jan-2023
  • (2021)Triadic Exploration and Exploration with Multiple ExpertsFormal Concept Analysis10.1007/978-3-030-77867-5_11(175-191)Online publication date: 29-Jun-2021
  • (2019)Semantic similarity measures for formal concept analysis using linked data and WordNetMultimedia Tools and Applications10.1007/s11042-019-7150-278:14(19807-19837)Online publication date: 1-Jul-2019
  • (2018)Topic-graph based recommendation on social tagging systemsProceedings of the 2018 International Conference on Data Science and Information Technology10.1145/3239283.3239316(138-143)Online publication date: 20-Jul-2018
  • (2016)Harnessing the Potential of HMM for Movie Rating RecommendationProcedia Computer Science10.1016/j.procs.2016.08.20196:C(1543-1550)Online publication date: 1-Oct-2016
  • (2016)Context-aware ontologies generation with basic level concepts from collaborative tagsNeurocomputing10.1016/j.neucom.2016.02.070208:C(25-38)Online publication date: 5-Oct-2016
  • (2016)Folksonomy-Based Recommender SystemsInternational Journal of Intelligent Systems10.1002/int.2175331:4(314-346)Online publication date: 1-Apr-2016
  • (2015)Reduction in triadic data setsProceedings of the 4th International Conference on What can FCA do for Artificial Intelligence? - Volume 143010.5555/2907112.2907119(55-62)Online publication date: 25-Jul-2015
  • (2015)Membership constraints in formal concept analysisProceedings of the 24th International Conference on Artificial Intelligence10.5555/2832581.2832693(3186-3192)Online publication date: 25-Jul-2015
  • (2015)Semantic Emergence From Social Tagging SystemsInternational Journal of Organizational and Collective Intelligence10.5555/2795533.27955355:1(16-31)Online publication date: 1-Jan-2015
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media