Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model

Published: 01 December 2002 Publication History

Abstract

We propose a new multiphase level set framework for image segmentation using the Mumford and Shah model, for piecewise constant and piecewise smooth optimal approximations. The proposed method is also a generalization of an active contour model without edges based 2-phase segmentation, developed by the authors earlier in T. Chan and L. Vese (1999. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141–151) and T. Chan and L. Vese (2001. IEEE-IP, 10(2):266–277). The multiphase level set formulation is new and of interest on its own: by construction, it automatically avoids the problems of vacuum and overlap; it needs only log n level set functions for n phases in the piecewise constant case; it can represent boundaries with complex topologies, including triple junctions; in the piecewise smooth case, only two level set functions formally suffice to represent any partition, based on The Four-Color Theorem. Finally, we validate the proposed models by numerical results for signal and image denoising and segmentation, implemented using the Osher and Sethian level set method.

References

[1]
Amadieu, O., Debreuve, E., Barlaud, M., and Aubert, G. 1999. Inward and outward curve evolution using level set method. In Proceedings ICIP, Japan, pp. 188-192.
[2]
Ambrosio, L. 1989. A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. It., 3(B):857-881.
[3]
Ambrosio, L. and Tortorelli, V.M. 1990. Approximation of functionals depending on jumps by elliptic functionals via ¿--convergence. Comm. Pure Appl. Math., 43:999-1036.
[4]
Ambrosio, L. and Tortorelli, V.M. 1992. On the approximation of free discontinuity problems. Bolletino U.M.I., 7(6-B):105-123.
[5]
Aubert, G. and Kornprobst, P. 2001. Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147, Springer: New York.
[6]
Barles, G. 1994. Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications, vol. 17, Springer-Verlag.
[7]
Barles, G. and Souganidis, P.E. 1998. A new approach to front propagation problems: theory and applications. Arch. Rational Mech. Analysis, 141(3):237-296.
[8]
Bourdin, B. 1999. Image segmentation with a finite element method. M2AN Math. Model. Numer. Anal., 33(2):229-244.
[9]
Bourdin, B. and Chambolle, A. 2000. Implementation of a finite-elements approximation of the Mumford-Shah functional. Numer. Math., 85(4):609-646.
[10]
Caselles, V., Morel, J.M., and Sbert, C. 1998. An axiomatic approach to image interpolation. IEEE-IP, 7(3):376-386.
[11]
Chambolle, A. 1992. Un théorème de ¿-convergence pour la segmentation des signaux. C. R. Acad. Sci. Paris, 314(I):191-196.
[12]
Chambolle, A. 1995. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math., 55(3):827-863.
[13]
Chambolle, A. 1999. Finite-differences discretizations of the Mumford-Shah functional. M2AN Math. Model. Numer. Anal., 33(2):261-288.
[14]
Chambolle, A. and Dal Maso, G. 1999. Discrete approximation of the Mumford-Shah functional in dimension two. M2AN Math. Model. Numer. Anal., 33(4):651-672.
[15]
Chan, T. and Vese, L. 1999. An active contour model without edges. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, pp. 141-151.
[16]
Chan, T. and Vese, L. 2001. Active contours without edges. IEEE-IP, 10(2):266-277.
[17]
Chan, T., Sandberg, B.Y., and Vese, L. 2000. Active contours without edges for vector-valued images. JVCIR, 11:130-141.
[18]
Chen, Y.G., Giga, Y., and Goto, S. 1991. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Diff. Geometry, 33:749-786.
[19]
Chen, S., Merriman, B., Osher, S., and Smereka, P. 1997. A simple level set method for solving Stefan problems. JCP, 135:8-29.
[20]
Cohen, L.D. 1997. Avoiding local minima for deformable curves in image analysis. In Curves and Surfaces with Applications in CAGD, A. Le Méhauté, C. Rabut, and L.L. Schumaker (Eds.), pp. 77-84.
[21]
Cohen, L., Bardinet, E., and Ayache, N. 1993. Surface reconstruction using active contour models. In Proceedings SPIE 93 Conference on Geometric Methods in Computer Vision, San Diego, CA, July 1993.
[22]
Crandall, M.G., Ishii, H., and Lions, P.-L. 1992. User's guide to viscosity solutions of second order partial differential equations. Amer. Math. Soc. Bull., 27:1-67.
[23]
Dal Maso, G., Morel, J.M., and Solimini, S. 1992. A variational method in image segmentation: existence and approximation results. Acta Matematica, 168:89-151.
[24]
De Giorgi, E. and Ambrosio, L. 1988. New functionals in the calculus of variations. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82(2):199-210.
[25]
De Giorgi, E., Carriero, M., and Leaci, A. 1989. Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal., 108(3):195-218.
[26]
Ei, S.-I., Ikota, R., and Mimura, M. 1999. Segregating partition problem in competition-diffusion systems. Interfaces and Free Boundaries , 1(1):57-80.
[27]
Evans, L.C. and Gariepy, R.F. 1992. Measure Theory and Fine Properties of Functions. CRC Press: Boca Raton, FL.
[28]
Evans, L.C. and Spruck, J. 1991. Motion of level sets by mean curvature. J. Diff. Geometry, 33:635-681.
[29]
Fedkiw, R.P. 1999. The ghost fluid method for discontinuities and interfaces. In Proceedings of Godunov Methods: Theory and Applications , Oxford, UK, October 1999.
[30]
Fedkiw, R.P., Aslam, T., Merriman, B., and Osher, S. 1999. A nonoscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). JCP, 152:457-492.
[31]
Guichard, F. and Morel, J.-M. Image Analysis and P.D.E.'s (to appear).
[32]
Jensen, R. 1993. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Rat. Mech. Anal., 123:51-74.
[33]
Kanizsa, G. 1997. La grammaire du voir. Essais sur la perception. Diderot Editeur, Arts et Sciences.
[34]
Koepfler, G., Lopez, C., and Morel, J.M. 1994. A multiscale algorithm for image segmentation by variational method. SIAM J. of Numerical Analysis, 31(1):282-299.
[35]
Leonardi, G.P. and Tamanini, I. 1998. On minimizing partitions with infinitely many components. Ann. Univ. Ferrara-Sez. VII-Sc. Mat., XLIV:41-57.
[36]
Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., and Kikinis, R. 1999. Co-dimension 2 geodesic active contours for MRA segmentation. Information Processing in Medical Imaging, Proceedings, LNCS, vol. 1613, pp. 126-139.
[37]
March, R. 1992. Visual Reconstruction with discontinuities using variational methods. IVC, 10:30-38.
[38]
Massari, U. and Tamanini, I. 1993. On the finiteness of optimal partitions. Ann. Univ. Ferrara-Sez. VII-Sc. Mat., XXXIX: 167-185.
[39]
Merriman, B., Bence, J.K., and Osher, S. 1994. Motion of multiple junctions: A level set approach. JCP, 112(2):334-363.
[40]
Morel, J.M. and Solimini, S. 1988. Segmentation of images by variational methods: A constructive approach. Revista Matematica Universidad Complutense de Madrid, 1:169-182.
[41]
Morel, J.M. and Solimini, S. 1989. Segmentation d'images par méthode variationnelle: Une preuve constructive d'existence. CRASS Paris Série I, Math., 308:465-470.
[42]
Morel, J.M. and Solimini, S. 1994. Variational Methods in Image Segmentation. PNLDE, vol. 14, Birkhäuser: Basel.
[43]
Mumford, D., Nitzberg, M., and Shiota, T. 1993. Filtering, Segmentation and Depth. LNCS, vol. 662, Springer-Verlag: Berlin.
[44]
Mumford, D. and Shah, J. 1989. Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42:577-685.
[45]
Osher, S. and Fedkiw, R.P. 2001. Level set methods: An overview and some recent results. JCP, 169(2):463-502.
[46]
Osher, S.J. and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Science, vol. 153, Springer.
[47]
Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. JCP, 79:12-49.
[48]
Paragios, N. and Deriche, R. 2000. Coupled Geodesic active regions for image segmentation: A level set approach. In Proceedings ECCV, Dublin, vol. II, pp. 224-240.
[49]
Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 1999. A level set model for image classification. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, Springer-Verlag: Berlin, pp. 306-317.
[50]
Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 2000. A level set model for image classification. IJCV, 40(3):187-197.
[51]
Sapiro, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press: Cambridge, UK.
[52]
Sethian, J.A. 1999. Fast Marching Methods and Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press: Cambridge, UK.
[53]
Shah, J. 1996. A common framework for curve evolution, segmentation and anisotropic diffusion. In Proceedings CVPR, pp. 136-142.
[54]
Shah, J. 1999. Riemannian Drums, Anisotropic Curve Evolution and Segmentation. In Scale-Space'99, M. Nilsen et al. (Eds.), LNCS, vol. 1682, Springer-Verlag: Berlin, pp. 129-140.
[55]
Sharon, E., Brandt, A., and Basri, R. 2000. Fast multiscale image segmentation. In Proceedings CVPR, South Carolina, pp. 70-77.
[56]
Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE-PAMI, 22(8):888-905.
[57]
Smith, K.A., Solis, F.J., and Chopp, D. 2002. A projection method for motion of triple junctions by level sets. Interfaces and Free Boundaries, 4(3):263-276.
[58]
Sussman, M., Smereka, P., and Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flows. JCP, 119:146-159.
[59]
Tamanini, I. 1996. Optimal approximation by piecewise constant functions. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, 25:73-85.
[60]
Tamanini, I. and Congedo, G. 1996. Optimal segmentation of unbounded functions. Rend. Sem. Mat. Univ. Padova, 95:153-174.
[61]
Tsai, A., Yezzi, A., and Willsky, A.S. 2001. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE-IP, 10(8): 1169-1186.
[62]
Yezzi, A., Tsai, A., and Willsky, A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings ICCV, pp. 898-903.
[63]
Zhao, H.-K., Chan, T., Merriman, B. and Osher, S. 1996. A variational level set approach to multiphase motion. JCP 127:179-195.
[64]
Zhu, S.C., Lee, T.S., and Yuille, A.L. 1995. Region competition: Unifying snakes, region growing, Energy/Bayes/MDL for multi-band image segmentation. In Proceedings ICCV, Cambridge, pp. 416-423.
[65]
Zhu, S.C. and Yuille, A. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. IEEE-PAMI, 18:884-90.

Cited By

View all
  • (2024)Box2Mask: Box-Supervised Instance Segmentation via Level-Set EvolutionIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.336305446:7(5157-5173)Online publication date: 6-Feb-2024
  • (2024)Lifting-based variational multiclass segmentation algorithmJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115583439:COnline publication date: 15-Mar-2024
  • (2024)Unsupervised image segmentation evaluation based on feature extractionMultimedia Tools and Applications10.1007/s11042-023-15384-z83:2(4887-4913)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Computer Vision
International Journal of Computer Vision  Volume 50, Issue 3
December 2002
124 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 December 2002

Author Tags

  1. PDE's
  2. active contours
  3. curvature
  4. denoising
  5. edge detection
  6. energy minimization
  7. image segmentation
  8. level sets
  9. multi-phase motion

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Box2Mask: Box-Supervised Instance Segmentation via Level-Set EvolutionIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.336305446:7(5157-5173)Online publication date: 6-Feb-2024
  • (2024)Lifting-based variational multiclass segmentation algorithmJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115583439:COnline publication date: 15-Mar-2024
  • (2024)Unsupervised image segmentation evaluation based on feature extractionMultimedia Tools and Applications10.1007/s11042-023-15384-z83:2(4887-4913)Online publication date: 1-Jan-2024
  • (2024)An Efficient and Versatile Variational Method for High-Dimensional Data ClassificationJournal of Scientific Computing10.1007/s10915-024-02644-9100:3Online publication date: 1-Aug-2024
  • (2024)Unsupervised deep learning for geometric feature detection and multilevel-multimodal image registrationApplied Intelligence10.1007/s10489-024-05585-w54:17-18(7878-7896)Online publication date: 1-Sep-2024
  • (2024)An entropy-weighted local intensity clustering-based model for segmenting intensity inhomogeneous imagesMultimedia Systems10.1007/s00530-023-01247-y30:1Online publication date: 29-Jan-2024
  • (2023)Artificial Intelligence based real-time automatic detection and classification of skin lesion in dermoscopic samples using DenseNet-169 architectureJournal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology10.3233/JIFS-23302445:4(6943-6958)Online publication date: 1-Jan-2023
  • (2023)Space-variant image reconstruction via Cauchy regularisationSignal Processing10.1016/j.sigpro.2022.108866205:COnline publication date: 1-Apr-2023
  • (2023)Active contour model based on local Kullback–Leibler divergence for fast image segmentationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106472123:PCOnline publication date: 1-Aug-2023
  • (2023)Multi-phase image segmentation by the Allen–Cahn Chan–Vese modelComputers & Mathematics with Applications10.1016/j.camwa.2022.12.020141:C(207-220)Online publication date: 1-Jul-2023
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media