Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Fast and Parallel Interval Arithmetic

Published: 01 September 1999 Publication History

Abstract

Infimum-supremum interval arithmetic is widely used because of ease of implementation and narrow results. In this note we show that the overestimation of midpoint-radius interval arithmetic compared to power set operations is uniformly bounded by a factor 1.5 in radius. This is true for the four basic operations as well as for vector and matrix operations, over real and over complex numbers. Moreover, we describe an implementation of midpoint-radius interval arithmetic entirely using BLAS. Therefore, in particular, matrix operations are very fast on almost any computer, with minimal effort for the implementation. Especially, with the new definition it is seemingly the first time that full advantage can be taken of the speed of vector and parallel architectures. The algorithms have been implemented in the Matlab interval toolbox INTLAB.

References

[1]
G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.
[2]
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, and S. Hammarling, LAPACK User's Guide, SIAM, Philadelphia, PA, 1992.
[3]
G. F. Corliss, Comparing software packages for interval arithmetic, Preprint presented at SCAN'93, Vienna, 1993.
[4]
J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[5]
J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User's Guide, SIAM, Philadelphia, PA, 1979.
[6]
J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, Algorithm 679: A set of Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Software, 16 (1990), pp. 18–28.
[7]
I. Gargantini and P. Henrici, Circular arithmetic and the determination of polynomial zeros, Numer. Math., 18 (1972), pp. 305–320.
[8]
N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.
[9]
ANSI/IEEE 754–1985, Standard for Binary Floating-Point Arithmetic, 1985.
[10]
R. B. Kearfott, M. Dawande, and C. Hu, INTLIB: A portable Fortran-77 interval standard function library, ACM Trans. Math. Software, 20 (1994), pp. 447–459.
[11]
R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich, PASCAL-XSC: Language reference with examples, Springer-Verlag, Berlin, 1992.
[12]
O. Knüppel, Einschlieβungsmethoden zur Bestimmung der Nullstellen nichtlinearer Gleichungssysteme und ihre Implementierung, PhD thesis, Technische Universität Hamburg-Harburg, 1994.
[13]
O. Knüppel, PROFIL/BIAS—a fast interval library, Computing, 53 (1994), pp. 277–287.
[14]
R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing, 4 (1969), pp. 187–201.
[15]
R. Krier, Komplexe Kreisarithmetik, PhD thesis, Universität Karlsruhe, 1973.
[16]
U. Kulisch, Grundlagen des numerischen Rechnens (Reihe Informatik 19), Bibliographisches Institut, Mannheim, 1976.
[17]
C. Lawo, C-XSC, a programming environment for verified scientific computing and numerical data processing, in Scientific Computing with Automatic Result Verification, E. Adams and U. Kulisch, eds., Academic Press, Orlando, FL, 1992, pp. 71–86.
[18]
C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic linear algebra subprograms for FORTRAN usage, ACM Trans. Math. Software, 5 (1979), pp. 308–323.
[19]
R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[20]
J. J. Morè and M.Y. Cosnard, Numerical solution of non-linear equations, ACM Trans. Math. Software, 5 (1979), pp. 64–85.
[21]
A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1990.
[22]
S. Oishi, private communication, 1998.
[23]
L. D. Petković and M. S. Petković, Inequalities in circular arithmetic: a survey, Math. Appl., 430 (1998), pp. 325–340.
[24]
S. M. Rump, Kleine Fehlerschranken bei Matrixproblemen, PhD thesis, Universität Karlsruhe, 1980.
[25]
S. M. Rump, Validated solution of large linear systems, in Computing Supplementum, vol. 9, R. Albrecht, G. Alefeld, and H. J. Stetter, eds., Springer-Verlag, Berlin, 1993, pp. 191–212.
[26]
S. M. Rump, INTLAB-INTerval LABoratory, in Developments in Reliable Computing, ed. T. Csendes, Kluwer Academic Publishers, 1999.
[27]
A. Törn and A. Žilinskas, Global Optimization, Springer-Verlag, Berlin, 1989.

Cited By

View all
  • (2024)Adversarial Robustness Certification for Bayesian Neural NetworksFormal Methods10.1007/978-3-031-71162-6_1(3-28)Online publication date: 9-Sep-2024
  • (2020)Hybridization of bisection method for solving non-differentiable nonlinear equationsProceedings of the 24th Pan-Hellenic Conference on Informatics10.1145/3437120.3437324(277-280)Online publication date: 20-Nov-2020
  • (2020)Modified error bounds for approximate solutions of dense linear systemsJournal of Computational and Applied Mathematics10.1016/j.cam.2019.112546369:COnline publication date: 1-May-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image BIT
BIT  Volume 39, Issue 3
Sep 1999
200 pages

Publisher

BIT Computer Science and Numerical Mathematics

United States

Publication History

Published: 01 September 1999

Author Tags

  1. Interval arithmetic
  2. parallel computer
  3. BLAS
  4. midpoint-radius
  5. infimum-supremum

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Adversarial Robustness Certification for Bayesian Neural NetworksFormal Methods10.1007/978-3-031-71162-6_1(3-28)Online publication date: 9-Sep-2024
  • (2020)Hybridization of bisection method for solving non-differentiable nonlinear equationsProceedings of the 24th Pan-Hellenic Conference on Informatics10.1145/3437120.3437324(277-280)Online publication date: 20-Nov-2020
  • (2020)Modified error bounds for approximate solutions of dense linear systemsJournal of Computational and Applied Mathematics10.1016/j.cam.2019.112546369:COnline publication date: 1-May-2020
  • (2019)Enclosing Chebyshev Expansions in Linear TimeACM Transactions on Mathematical Software10.1145/331939545:3(1-33)Online publication date: 30-Jul-2019
  • (2011)An algorithm for automatically selecting a suitable verification method for linear systemsNumerical Algorithms10.1007/s11075-010-9389-656:3(363-382)Online publication date: 1-Mar-2011
  • (2011)Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverseBIT10.1007/s10543-010-0294-051:2(367-384)Online publication date: 1-Jun-2011
  • (2010)High performance linear algebra using interval arithmeticProceedings of the 4th International Workshop on Parallel and Symbolic Computation10.1145/1837210.1837236(171-172)Online publication date: 21-Jul-2010
  • (2007)Geometrical Representation of Quantity Space and Its Application to Robot Motion DescriptionKnowledge-Based Intelligent Information and Engineering Systems and the XVII Italian Workshop on Neural Networks on Proceedings of the 11th International Conference10.1007/978-3-540-74827-4_3(18-25)Online publication date: 12-Sep-2007
  • (2003)On the Inclusion Properties of Interval Multiplication: A Diagrammatic StudyBIT10.1023/B:BITN.0000009960.43847.5343:4(791-810)Online publication date: 1-Nov-2003
  • (2002)A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential EquationsJournal of Global Optimization10.1023/A:101625950791124:1(1-33)Online publication date: 1-Sep-2002

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media