Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Multi-Objective Methods for Tree Size Control

Published: 01 September 2003 Publication History

Abstract

Variable length methods for evolutionary computation can lead to a progressive and mainly unnecessary growth of individuals, known as bloat. First, we propose to measure performance in genetic programming as a function of the number of nodes, rather than trees, that have been evaluated. Evolutionary Multi-Objective Optimization (EMOO) constitutes a principled way to optimize both size and fitness and may provide parameterless size control. Reportedly, its use can also lead to minimization of size at the expense of fitness. We replicate this problem, and an empirical analysis suggests that multi-objective size control particularly requires diversity maintenance. Experiments support this explanation.
The multi-objective approach is compared to genetic programming without size control on the 11-multiplexer, 6-parity, and a symbolic regression problem. On all three test problems, the method greatly reduces bloat and significantly improves fitness as a function of computational expense. Using the FOCUS algorithm, multi-objective size control is combined with active pursuit of diversity, and hypothesized minimum-size solutions to 3-, 4- and 5-parity are found. The solutions thus found are furthermore easily interpretable. When combined with diversity maintenance, EMOO can provide an adequate and parameterless approach to size control in variable length evolution.

References

[1]
1. P. J. Angeline, "Genetic programming and emergent intelligence," in Advances in Genetic Programming, K. E. Kinnear Jr. (ed.), MIT Press: Cambridge, MA, 1994, pp. 75-98.]]
[2]
2. P. J. Angeline and J. B. Pollack, "The evolutionary induction of subroutines," in Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, Lawrence Erlbaum: Bloomington, Indiana, USA, 1992, pp. 236-241.]]
[3]
3. W. Banzhaf, D. Banscherus and P. Dittrich, "Hierarchical genetic programming using local modules," Interjournal Complex Systems (228), 1998, URL: http://www.interjournal.org.]]
[4]
4. W. Banzhaf and W. B. Langdon, "Some considerations on the reason for bloat," Genetic Programming and Evolvable Machines, vol. 3, no. 1, pp. 81-91, 2002.]]
[5]
5. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming--An Introduction: On the Automatic Evolution of Computer Programs and its Applications, dpunkt--Verlag für digitale Technologie GbmH and Morgan Kaufmann Publishers Inc.: Heidelberg and San Francisco, CA, 1998.]]
[6]
6. T. Blickle and L. Thiele, "Genetic programming and redundancy," in Genetic Algorithms within the Framework of Evolutionary Computation. Workshop at KI-94, J. Hopf (ed.), Max-Planck-Institut für Informatik (MPI-I-94-241): Saarbrücken, Germany, 1994, pp. 33-38.]]
[7]
7. A. Brindle, Genetic Algorithms for Function Optimization. Unpublished doctoral dissertation, (Computer Science Department, Technical Report TR81-2), University of Alberta, Canada.]]
[8]
8. C. A. C. Coello, "An updated survey of GA-Based multiobjective optimization techniques," ACM Computing Surveys, vol. 32, no. 2, pp. 109-143, 2000.]]
[9]
9. W. Conover, Practical Nonparametric Statistics, Wiley: New York, NY, 1980.]]
[10]
10. D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, "PESA-II: Region-based selection in evolutionary multiobjective optimization," in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001, L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke (eds.), Morgan Kaufmann: San Francisco, CA, 2001, pp. 283-290.]]
[11]
11. N. L. Cramer, "A representation for the adaptive generation of simple sequential programs," in Proceedings of an International Conference on Genetic Algorithms and their Applications, J. J. Grefenstette (ed.), Pittsburgh, PA, 1985, pp. 183-187.]]
[12]
12. E. D. De Jong, R. A. Watson, and J. B. Pollack, "Reducing bloat and promoting diversity using multi-objective methods," in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001, L. Spector, E. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke (eds.), Morgan Kaufmann Publishers: San Francisco, CA, 2001, pp. 11-18.]]
[13]
13. K. Deb, Multi-objective Optimization using Evolutionary Algorithms, Wiley: Chichester, UK, 2001.]]
[14]
14. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II," in Parallel Problem Solving from Nature-- PPSN VI (Vol. 1917), M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel (eds.), Springer Verlag, 2000, pp. 849-858.]]
[15]
15. A. Ekárt and S. Németh, "Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming," Genetic Programming and Evolvable Machines, vol. 2, pp. 61-73, 2001.]]
[16]
16. C. M. Fonseca and P. J. Fleming, "Genetic algorithms for multiobjective optimization: formulation, discussion and generalization," in Proceedings of the Fifth International Conference on Genetic Algorithms, ICGA-93, S. Forrest (ed.), Morgan Kauffman Publishers: San Mateo, CA, 1993, pp. 416-423.]]
[17]
17. C. M. Fonseca and P. J. Fleming, "An overview of evolutionary algorithms in multiobjective optimization," Evolutionary Computation, vol. 3, no. 1, pp. 1-16, 1995.]]
[18]
18. M. P. Fourman, "Compaction of symbolic layout using genetic algorithms," in Proceedings of the First International Conference on Genetic Algorithms and their Applications, J. J. Grefenstette (ed.), Lawrence Erlbaum Associates: Hillsdale, New Jersey, 1985, pp. 141-153.]]
[19]
19. M. Keijzer, Scientific Discovery using Genetic Programming, Unpublished doctoral dissertation, Danish Technical University, Lyngby.]]
[20]
20. K. E. Kinnear, Jr, "Generality and difficulty in genetic programming: Evolving a sort," in Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, S. Forrest (ed.), Morgan Kaufmann: San Mateo, CA, 1993, pp. 287-294.]]
[21]
21. J. R. Koza, Genetic Programming, MIT Press: Cambridge, MA, 1992.]]
[22]
22. J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press: Cambridge, MA, 1994.]]
[23]
23. W. B. Langdon, "Data structures and genetic programming," in Advances in Genetic Programming 2, P. J. Angeline and K. Kinnear (eds.), MIT Press: Cambridge, MA, 1996, pp. 395-414.]]
[24]
24. W. B. Langdon, "The evolution of size in variable length representations," in 1998 IEEE International Conference on Evolutionary Computation, IEEE Press: Anchorage, Alaska, USA, 1998, pp. 633-638.]]
[25]
25. W. B. Langdon and J. P. Nordin, "Seeding GP populations," in Genetic Programming, Proceedings of EuroGP-2000 (Vol. 1802), R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty (eds.), Springer-Verlag: Edinburgh, 2000, pp. 304-315.]]
[26]
26. W. B. Langdon and R. Poli, "Fitness causes bloat: Mutation," in Proceedings of the First European Workshop on Genetic Programming (Vol. 1391), W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty (eds.), Springer-Verlag: Paris, 1998, pp. 37-48.]]
[27]
27. W. B. Langdon and R. Poli, Foundations of Genetic Programming, Springer-Verlag, 2002.]]
[28]
28. W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, "The evolution of size and shape," in Advances in Genetic Programming 3, L. Spector, W. B. Langdon, U.-M. O'Reilly, P. J. Angeline (eds.), MIT Press: Cambridge, MA, 1999, pp. 163-190.]]
[29]
29. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, Combining convergence and diversity in evolutionary multi-objective optimization, Evolutionary Computation, vol. 10, no. 3, pp. 263-282, 2002.]]
[30]
30. S. Luke and L. Panait, "Fighting bloat with nonparametric parsimony pressure," in Parallel problem solving from nature--PPSN VII. (p. 411 ff.), H.-P. Schwefel, J.-J. Merelo Guervós, P. Adamidis, H.-G. Beyer, and J.-L. Fernández-Villacañas (eds.), Springer-Verlag: 2002.]]
[31]
31. S. W. Mahfoud, Niching Methods for Genetic Algorithms, Unpublished doctoral dissertation, Urbana, IL, (IlliGAL Report 95001).]]
[32]
32. N. F. McPhee and J. D. Miller, "Accurate replication in genetic programming," in Genetic Algorithms: Proceedings of the Sixth International Conference, ICGA-95, L. Eshelman (ed.), Morgan Kaufmann: Pittsburgh, PA, 1995, pp. 303-309.]]
[33]
33. P. Nordin and W. Banzhaf, "Complexity compression and evolution," in Genetic Algorithms: Proceedings of the Sixth International Conference, ICGA-95, L. Eshelman (ed.), Morgan Kaufmann: Pittsburgh, PA, 1995, pp. 310-317.]]
[34]
34. P. Nordin, F. Francone and W. Banzhaf, "Explicitly defined introns and destructive crossover in genetic programming," in Advances in Genetic Programming 2, P. J. Angeline and K. E. Kinnear Jr. (eds.), MIT Press: Cambridge, MA, 1996, pp. 111-134.]]
[35]
35. R. Olsson, "Inductive functional programming using incremental program transformation," Artificial Intelligence, vol. 74, no. 1, pp. 55-81, 1995.]]
[36]
36. R. Poli, "Discovery of symbolic, neuro-symbolic and neural networks with parallel distributed genetic programming. In 3rd International Conference on Artifical Neural Networks and Genetic Algorithms," in ICANNGA'97, Springer: Berlin, 1997.]]
[37]
37. R. Poli and N. F. McPhee, "Exact schema theorems for gp with one-point and standard crossover operating on linear structures and their application to the study of the evolution of size," in Genetic Programming. 4th European Conference, EuroGP 2001, J. Miller, M. Tomassini, P. Lanzi, C. Ryan, A. Tettamanzi, and W. Langdon (eds.), Springer: Berlin, 2001, pp. 126-142.]]
[38]
38. K. Rodríguez-Vázquez, C. M. Fonseca and P. J. Fleming, "Multi-objective genetic programming: A nonlinear system identification application," in Late Breaking Papers at the 1997 Genetic Programming Conference, J. R. Koza (ed.), Stanford Bookstore: Stanford University, CA, 1997, pp. 207-212.]]
[39]
39. J. Rosca, "Generality versus size in genetic programming," in Genetic Programming 1996: Proceedings of the First Annual Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.), MIT Press: Cambridge, MA, 1996, pp. 381-387.]]
[40]
40. J. D. Schaffer, "Multiple objective optimization with vector evaluated genetic algorithms," in Proceedings of the First International Conference on Genetic Algorithms and their Applications, J. J. Grefenstette (ed.), Lawrence Erlbaum Associates: Hillsdale, New Jersey, 1985, pp. 93-100.]]
[41]
41. S. Smith, A Learning System Based on Genetic Adaptive Algorithms, Unpublished doctoral dissertation, University of Pittsburgh.]]
[42]
42. T. Soule, Code Growth in Genetic Programming, Unpublished doctoral dissertation, University of Idaho.]]
[43]
43. T. Soule and J. A. Foster, "Effects of code growth and parsimony presure on populations in genetic programming," Evolutionary Computation, vol. 6, no. 4, pp. 293-309, 1999.]]
[44]
44. T. Soule and R. B. Heckendorn, "An analysis of the causes of code growth in genetic programming," Genetic Programming and Evolvable Machines, vol. 3, pp. 283-309, 2002.]]
[45]
45. B.-T. Zhang and H. Mühlenbein, "Balancing accuracy and parsimony in genetic programming," Evolutionary Computation, vol. 3, no. 1, pp. 17-38, 1995.]]
[46]
46. E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach," IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257-271, 1999.]]

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines  Volume 4, Issue 3
September 2003
81 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 September 2003

Author Tags

  1. Genetic programming
  2. Pareto optimality
  3. bloat
  4. code growth
  5. interpretability
  6. multi-objective optimization
  7. variable size representations

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Semantic-Based Hoist Mutation Operator for Evolutionary Feature Construction in RegressionIEEE Transactions on Evolutionary Computation10.1109/TEVC.2023.333123428:6(1689-1703)Online publication date: 1-Dec-2024
  • (2024)Modular Multitree Genetic Programming for Evolutionary Feature Construction for RegressionIEEE Transactions on Evolutionary Computation10.1109/TEVC.2023.331863828:5(1455-1469)Online publication date: 1-Oct-2024
  • (2023)Jaws 30Genetic Programming and Evolvable Machines10.1007/s10710-023-09467-x24:2Online publication date: 22-Nov-2023
  • (2023)Alleviating overfitting in transformation-interaction-rational symbolic regression with multi-objective optimizationGenetic Programming and Evolvable Machines10.1007/s10710-023-09461-324:2Online publication date: 20-Oct-2023
  • (2022)Evolvability degeneration in multi-objective genetic programming for symbolic regressionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3512290.3528787(973-981)Online publication date: 8-Jul-2022
  • (2022)Explainable Artificial Intelligence by Genetic Programming: A SurveyIEEE Transactions on Evolutionary Computation10.1109/TEVC.2022.322550927:3(621-641)Online publication date: 28-Nov-2022
  • (2022)GP-DMD: a genetic programming variant with dynamic management of diversityGenetic Programming and Evolvable Machines10.1007/s10710-021-09426-423:2(279-304)Online publication date: 21-Jan-2022
  • (2022)Bloat-aware GP-based methods with bloat quantificationApplied Intelligence10.1007/s10489-021-02245-152:4(4211-4225)Online publication date: 1-Mar-2022
  • (2020)A Multi-Objective Genetic Programming Hyper-Heuristic Approach to Uncertain Capacitated Arc Routing Problems2020 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC48606.2020.9185890(1-8)Online publication date: 19-Jul-2020
  • (2017)Statistical genetic programming for symbolic regressionApplied Soft Computing10.1016/j.asoc.2017.06.05060:C(447-469)Online publication date: 1-Nov-2017
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media