Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Joint frequency domain equalisation and phase noise estimation for single‐carrier modulations in doubly‐selective channels

Published: 01 May 2015 Publication History

Abstract

In this study the authors propose a novel joint detection and phase noise estimation scheme suited for severely time‐dispersive channels. The authors consider single‐carrier modulations combined with frequency domain equalisation schemes where the wireless transmission is impaired with phase noise. An iterative frequency‐domain equaliser is assumed on the receiver side and the phase noise is estimated and compensated for after the equalisation step and within each iteration of the equaliser. In fact, by exploiting the Gaussianity of the equaliser output the authors are able to track the phase noise using stochastic recursive filtering techniques. These techniques share the same dynamic state‐space (DSS) model. The observation equation corresponds to the measurement of the phase noise of a digitally‐modulated signal affected by additive white Gaussian noise, and the dynamics equation corresponds to the Wiener–Lévy model for the phase noise. Supported on this DSS model the authors aim at estimating the unknown phase noise value given all observations up to the current time instant. In a Bayesian context this represents estimating recursively in time the filtering and the predictive distributions. From these distributions a minimum mean‐squared error estimate of the phase noise is determined.

References

[1]
Gusmão A.Dinis R.Conceição J.Esteves N.: ‘Comparison of two modulation choices for broadband wireless communications’. IEEE Vehicle Technology Conf., Tokyo, Japan, May 2000, vol. 2, pp. 1300–1305
[2]
Falconer D.Ariyavisitakul S.Benyamin‐Seeyar A.Eidson B.: ‘Frequency domain equalization for single‐carrier broadband wireless systems’, IEEE Commun. Mag., 2002, 4, (4), pp. 58–66
[3]
Cimini Jr.L.: ‘Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing’, IEEE Trans. Commun., 1985, 33, pp. 400–411
[4]
Sari H.Karam G.Jeanclaude I.: ‘An analysis of orthogonal frequency‐division multiplexing for mobile radio applications’. IEEE Vehicle Technology Conf., Stockholm, Sweden, June 1994, pp. 1635–1639
[5]
Ekström H.Furuskär A.Karlsson J. et al.: ‘Technical solutions for the 3G long‐term evolution’, IEEE Commun. Mag., 2006, 44, (3), pp. 38–45
[6]
Benvenuto N.Dinis R.Falconer D.Tomasin S.: ‘Single carrier modulation with nonlinear frequency domain equalization: An idea whose time has come–again’, Proc. IEEE, 2010, 98, (1), pp. 69–96
[7]
Tüchler M.Koetter R.Singer A.: ‘Turbo equalization: principles and new results’, IEEE Trans. Commun., 2002, 50, pp. 754–767
[8]
Benvenuto N.Tomasin S.: ‘Iterative design and detection of a DFE in the frequency domain’, IEEE Trans. Commun., 2005, 53, (11), pp. 1867–1875
[9]
Gusmão A.Torres P.Dinis R.Esteves N.: ‘A turbo FDE technique for reduced‐CP SC‐based block transmission’, IEEE Trans. Commun., 2007, 55, (1), pp. 16–20
[10]
Pollet T.Van Bladel M.Moeneclaey M.: ‘BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise’, IEEE Trans. Commun., 1995, 43, (234), pp. 191–193
[11]
Tomba L.: ‘On the effect of Wiener phase noise in OFDM systems’, IEEE Trans. Commun., 1998, 46, (5), pp. 580–583
[12]
Armada A.Calvo M.: ‘Phase noise and sub‐carrier spacing effects on the performance of an OFDM communication system’, IEEE Commun. Lett., 1998, 2, (1), pp. 11–13
[13]
Armada A.: ‘Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM)’, IEEE Trans. Broadcast., 2001, 47, (2), pp. 153–159
[14]
Wu S.Bar‐Ness Y.: ‘OFDM systems in the presence of phase noise: consequences and solutions’, IEEE Trans. Commun., 2004, 52, (11), pp. 1988–1996
[15]
Tomba L.Krzymien W.: ‘Sensitivity of the MC‐CDMA access scheme to carrier phase noise and frequency offset’, IEEE Trans. Veh. Tech., 1999, 48, (5), pp. 1657–1665
[16]
Steendam H.Moeneclaey M.: ‘The effect of carrier phase jitter on MC‐CDMA performance’, IEEE Trans. Commun., 1999, 47, (2), pp. 195–198
[17]
Dinis R.Araújo T.Pedrosa P.Nunes F.: ‘Joint turbo equalization and carrier synchronization for SC‐FDE schemes’, Euro. Trans. Telecomm., 2010, 21, (2), pp. 131–141
[18]
Zou Q.Tarighat A.Sayed A.: ‘Compensation of phase noise in OFDM wireless systems’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 5407–5424
[19]
Petrovic D.Rave W.Fettweis G.: ‘Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation’, IEEE Trans. Commun., 2007, 55, (8), pp. 1607–1616
[20]
Amblard P.O.Brossier J.M.Moisan E.: ‘Phase tracking: what do we gain from optimality? particle filtering versus phase‐locked loops’, Signal Process., 2003, 83, (1), pp. 151–167
[21]
Munier F.Alpman E.Eriksson T.Svensson A.Zirath H.: ‘Estimation of phase noise for QPSK modulation over AWGN channels’. Proc. GigaHertz 2003 Symp., Liköping, Sweden, November 2003
[22]
Bay S.Herzet C.Brossier J.Barbot J.P.Geller B.: ‘Analytic and asymptotic analysis of Bayesian Cramér‐Rao bound for dynamical phase offset estimation’, IEEE Trans. Signal Process., 2008, 56, (1), pp. 61–70
[23]
Demir A.Mehrotra A.Roychowdhury J.: ‘Phase noise in oscillators: a unifying theory and numerical methods for characterization’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (5), pp. 655–674
[24]
Demir A.: ‘Computing timing jitter from phase noise spectra for oscillators and phase‐locked loops with white and 1\f noise’, IEEE Trans. Circuits Syst. I, Reg. _Pap., 2006, 53, (9), pp. 1869–1884
[25]
Khanzadi M.Mehrpouyan H.Alpman E.Svensson T.Kuylenstierna D.Eriksson T.: ‘On models, bounds, and estimation algorithms for time‐varying phase noise’. IEEE Int. Conf. Signal Processing and Communication System, Honolulu, HI, USA, December 2011, pp. 1–8
[26]
Pedrosa P.Dinis R.Nunes F.Bioucas‐Dias J.: ‘Phase drift estimation and symbol detection in digital communications: A stochastic recursive filtering approach’, IEEE Commun. Lett., 2012, 16, (6), pp. 854–857
[27]
Pedrosa P.Dinis R.Nunes F.: ‘Joint equalization and phase noise tracking for doubly selective channels’. 21st Int. Conf. on Computation Communication and Networks (ICCCN), Munich, Germany, 30 July–2 August 2012, pp. 1–7
[28]
Pedrosa P.Dinis R.Nunes F.: ‘Bayesian approach for the estimation of phase noise in SC‐FDE schemes’. IEEE Global Telecommunication Conf. (GLOBECOM), Houston, TX, USA, 5–9 December 2011
[29]
Mehrpouyan H.Nasir A.Blostein S.Eriksson T.Karagiannidis G.Svensson T.: ‘Joint estimation of channel and oscillator phase noise in mimo systems’, IEEE Trans. Signal Process., 2012, 60, (9), pp. 4790–4807
[30]
Merritt S.: ‘The iterated extended Kalman phase detector’, IEEE Trans. Commun., 1989, 37, (5), pp. 522–526
[31]
Dauwels J.Loeliger H.‐A.: ‘Joint decoding and phase estimation: an exercise in factor graphs’. Proc. of IEEE Int. Symp. on Information Theory, June 2003, p. 231
[32]
Shehata T.El‐Tanany M.: ‘Joint iterative detection and phase noise estimation algorithms using Kalman filtering’. 11th Canadian Workshop on Information Theory, May 2009, pp. 165–168
[33]
Sabbaghian M.Falconer D.: ‘Joint turbo frequency domain equalization and carrier synchronization’, IEEE Trans. on Wirel. Commun., 2008, 7, (1), pp. 204–212
[34]
Colavolpe G.Barbieri A.Caire G.: ‘Algorithms for iterative decoding in the presence of strong phase noise’, IEEE J. Sel. Areas Commun., 2005, 23, (9), pp. 1748–1757
[35]
Zhang L.Burr A.: ‘Iterative carrier phase recovery suited to turbo‐coded systems’, IEEE Trans. on Wireless Commun., 2004, 3, (6), pp. 2267–2276
[36]
Wu N.: ‘Performance analysis of code‐aided iterative carrier phase recovery in turbo receivers’, IET Commun., 2012, 6, pp. 2980–2988
[37]
Dinis R.Gusmão A.Esteves N.: ‘On broadband block transmission over strongly frequency‐selective fading channels’. IEEE Wireless, Calgary, Canada, July 2003
[38]
Dinis R.Montezuma P.Souto N.Silva J.: ‘Iterative frequency‐domain equalization for general constelations’. IEEE Sarnoff Symp., Princeton, NJ, USA, April 2010
[39]
Dinis R.Silva P.Gusmão A.: ‘IB‐DFE receivers with space diversity for CP‐assisted DS‐CDMA and MC‐CDMA systems’, Eur. Trans. Telecommun., 2007, 18, (7), pp. 791–802
[40]
Sanjeev Arulampalam M.Maskell S.Gordon N.Clapp T.: ‘A tutorial on particle filters for online nonlinear/non‐Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174–188
[41]
Djurić P.Kotecha J.H.Zhang J. et al.: ‘Particle filtering’, IEEE Signal Process. Mag., 2003, 20, (5), pp. 19–38
[42]
Andrieu C.Doucet A.Singh S.Tadić V.: ‘Particle methods for change detection, system identification, and control’, Proc. IEEE, 2004, 92, (3), pp. 423–438
[43]
Kotecha J.Djurić P.: ‘Gaussian particle filtering’, IEEE Trans. Signal Proc., 2003, 51, (10), pp. 2592–2601
[44]
Kotecha J.Djurić P.: ‘Gaussian sum particle filtering’, IEEE Trans. Signal Proc., 2003, 51, (10), pp. 2602–2612
[45]
Jazwinski A.: ‘Stochastic processes and filtering theory’ (Academic Press, New York, 1970)
[46]
Bolic M.Djuric P.M.Hong S.: ‘Resampling algorithms for particle filters: A computational complexity perspective’, EURASIP J. Adv. Signal Process., 2004, 2004, (15), pp. 2267–2277
[47]
Leitão J.M.N.Moura J.M.F.: ‘Nonlinear phase estimators based on the Kullback distance’. IEEE Int. Conf. Acoustics, Speech, Signal Process., Adelaide, Australia, April 1994, vol. 4, pp. 521–524
[48]
Alspach D.Sorenson H.: ‘Nonlinear Bayesian estimation using Gaussian sum approximations’, IEEE Trans. Autom. Control, 1972, 17, (4), pp. 339–448
[49]
Leitão J.M.N.Moura J.M.F.: ‘Acquisition in phase demodulation: application to ranging in radar/sonar systems’, IEEE Trans. Aerosp. Electron. Syst., 1995, 31, (2), pp. 581–599
[50]
Lainiotis D.G.: ‘Partitioning: A unifying framework for adaptative systems I: Estimation’, Proc. IEEE, 1976, 64, pp. 1126–1143
[51]
Bar‐Shalom Y.Li X.R.: ‘Estimation and tracking: principles, techniques and software’ (Artech House, New York, 1986)
[52]
Tichavsky P.Muravchik C.Nehorai A.: ‘Posterior Cramer‐Rao bounds for discrete‐time nonlinear filtering’, IEEE Trans. Signal Process.,, 1998, 46, (5), pp. 1386–1396
[53]
ETSI : ‘Channel models for HIPERLAN/2 in different indoor scenarios’. ETSI EP BRAN 3ERI085B, March 1998, pp. 1–8
[54]
Proakis J.: ‘Digital communications’ (McGraw‐Hill, New York, 1995)

Recommendations

Comments

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media