Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Non‐orthogonal frequency division multiplexing based on sparse representation

Published: 10 September 2018 Publication History

Abstract

This study proposes a sparse non‐orthogonal frequency division multiplexing (S‐NOFDM) based on sparse representation to improve the spectral efficiency of orthogonal frequency division multiplexing (OFDM). The subcarriers of S‐NOFDM are generated from a subset of OFDM orthogonal subcarriers, which therefore requires less spectral resource. Each selected OFDM subcarrier is shifted into a group of overlapping subcarriers with different time delays. The modulated signal is produced by solving the sparse representation of the input signal under the generated set of subcarriers. The demodulation is simply a linear combination of generated subcarriers with the recovered modulated signal. Simulation results show that the proposed S‐NOFDM can achieve better bit error rate performance in an additive white Gaussian noise channel and a little worse than OFDM in a Rayleigh channel, with less frequency resources required.

References

[1]
Mirahmadi M., Al‐Dweik A., Shami A.: ‘BER reduction of OFDM based broadband communication systems over multipath channels with impulsive noise’, IEEE Trans. Commun., 2013, 61, (11), pp. 4602–4615
[2]
Tao Y., Liu L., Liu S.et al.: ‘A survey: several technologies of non‐orthogonal transmission for 5G’, China Commun., 2015, 12, (10), pp. 1–15
[3]
Saideh M., Berbineau M., Dayoub I.: ‘5G waveforms for Railway’. IEEE 2017 15th Int. Conf. on ITS Telecommunications (ITST), Warsaw, Poland, 2017, pp. 1–5
[4]
Banelli P., Buzzi S., Colavolpe G.,et al.: ‘Modulation formats and waveforms for 5G networks: who will be the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency’, IEEE Signal Process. Mag., 2014, 31, (6), pp. 80–93
[5]
Wunder G., Jung P., Kasparick M.et al.: ‘5GNOW: non‐orthogonal, asynchronous waveforms for future mobile applications’, IEEE Commun. Mag., 2014, 52, (2), pp. 97–105
[6]
Farhang‐Boroujeny B.: ‘OFDM versus filter bank multicarrier’, IEEE Signal Process. Mag., 2011, 28, (3), pp. 92–112
[7]
Kim C., Kim K., Yun Y.H.et al.: ‘QAM‐FBMC: a new multi‐carrier system for post‐OFDM wireless communications’. 2015 IEEE Global Communications Conf. (GLOBECOM), San Diego, CA, USA, 2015, pp. 1–6
[8]
Vakilian V., Wild T., Schaich F.et al.: ‘Universal‐filtered multi‐carrier technique for wireless systems beyond LTE’. 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 2013, pp. 223–228
[9]
Ahmed R., Wild T., Schaich F.: ‘Coexistence of UF‐OFDM and CP‐OFDM’. 2016 IEEE 83rd Vehicular Technology Conf. (VTC Spring), Nanjing, China, 2016, pp. 1–5
[10]
Michailow N., Matthé M., Gaspar I.S.et al.: ‘Generalized frequency division multiplexing for 5th generation cellular networks’, IEEE Trans. Commun., 2014, 62, (9), pp. 3045–3061
[11]
Michailow N., Gaspar I., Krone S.et al.: ‘Generalized frequency division multiplexing: Analysis of an alternative multi‐carrier technique for next generation cellular systems’. 2012 Int. Symp. Wireless Communication Systems (ISWCS), Paris, France, 2012, pp. 171–175
[12]
Li J., Bala E., Yang R.: ‘Resource block filtered‐OFDM for future spectrally agile and power efficient systems’, Phys. Commun., 2014, 11, pp. 36–55
[13]
Renfors M., Yli‐Kaakinen J., Levanen T.et al.: ‘Efficient fast‐convolution implementation of filtered CP‐OFDM waveform processing for 5G’. 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 2015, pp. 1–7
[14]
Renfors M., Yli‐Kaakinen J., Levanen T.et al.: ‘Fast‐convolution filtered OFDM waveforms with adjustable CP length’. 2016 IEEE Global Conf. on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 2016, pp. 635–639
[15]
Yli‐Kaakinen J., Levanen T., Valkonen S.et al.: ‘Efficient fast‐convolution‐based waveform processing for 5G physical layer’, IEEE J. Sel. Areas Commun., 2017, 35, (6), pp. 1309–1326
[16]
Loulou A., EYli‐Kaakinen J., Renfors M.: ‘Efficient fast‐convolution based implementation of 5G waveform processing using circular convolution decomposition’. 2017 IEEE Int. Conf. Communications (ICC), Paris, France, 2017, pp. 1–7
[17]
Gerzaguet R., Bartzoudis N., Baltar L.G.et al.: ‘The 5G candidate waveform race: a comparison of complexity and performance’, EURASIP J. Wirel. Commun. Netw., 2017, 2017, (1), p. 13
[18]
Rubinstein R., Bruckstein A.M., Elad M.: ‘Dictionaries for sparse representation modeling’, Proc. IEEE, 2010, 98, (6), pp. 1045–1057
[19]
Zhang Z., Xu Y., Yang J.et al.: ‘A survey of sparse representation: algorithms and applications’, IEEE access, 2015, 3, pp. 490–530
[20]
Mallat S.G., Zhang Z.: ‘Matching pursuits with time‐frequency dictionaries’, IEEE Trans. Signal Process., 1993, 41, (12), pp. 3397–3415
[21]
Pati Y.C., Rezaiifar R., Krishnaprasad P.S.: ‘Orthogonal matching pursuit ‘Recursive function approximation with applications to wavelet decomposition’. 1993 Conf. Record of The Twenty‐Seventh Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, 1993, pp. 40–44
[22]
Donoho D.L., Huo X.: ‘Uncertainty principles and ideal atomic decomposition’, IEEE Trans. Inf. Theory, 2001, 47, (7), pp. 2845–2862
[23]
Alexandrov N.M., Lewis R.M.: ‘An overview of first‐order model management for engineering optimization’, Opt. Eng., 2001, 2, (4), pp. 413–430
[24]
Chen S.S., Donoho D.L., Saunders M.A.: ‘Atomic decomposition by basis pursuit’, SIAM Rev., 2001, 43, (1), pp. 129–159

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IET Communications
IET Communications  Volume 12, Issue 16
October 2018
130 pages
EISSN:1751-8636
DOI:10.1049/cmu2.v12.16
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 10 September 2018

Author Tags

  1. Rayleigh channels
  2. error statistics
  3. AWGN channels
  4. OFDM modulation
  5. signal representation
  6. demodulation

Author Tags

  1. time delays
  2. demodulation
  3. Rayleigh channel
  4. additive white Gaussian noise channel
  5. bit error rate performance
  6. nonorthogonal frequency division multiplexing
  7. OFDM subcarrier
  8. orthogonal subcarriers
  9. orthogonal frequency division multiplexing
  10. frequency resources
  11. generated subcarriers
  12. spectral efficiency
  13. S‐NOFDM
  14. sparse representation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media