Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

ZF detectors for uplink distributed massive MIMO systems over Rayleigh‐inverse Gaussian composite fading channels

Published: 01 December 2019 Publication History

Abstract

Massive multiple‐input multiple‐output (MIMO), together with distributed antenna systems has emerged as a promising technology in modern wireless networks because of their remarkable capacity potential and link reliability. The combined architecture, that is distributed massive MIMO (DM‐MIMO) comprises of arbitrarily located multiple radio ports (RPs) each having more than one antennas and a base station containing asymptotically large number of antennas. At the outset, the instantaneous output signal to noise ratio (SNR) corresponding to individual subchannel is obtained for ZF detector. Subsequently, closed form expression of exact and high SNR approximated ergodic capacity are obtained in the context of DM‐MIMO. The lower bound of ergodic capacity are then derived using a generalized approach, which may be applicable to all composite fading channels. Moreover, lower bound over all users are formulated in closed form considering large number of RPs located in a circular topology. In subsequent analysis, SER and OP characterization of the ZF detector over DM‐MIMO channel is presented with tractable mathematical expressions. In addition to the per subchannel based SER, the global average SER is also evaluated for the considered configurations. Finally, the implications of model parameters on ZF detectors are analysed through a set of Monte‐Carlo simulations.

References

[1]
Foschini G.J.: ‘Layered space‐time architecture for wireless communication in a fading environment when using multi‐element antennas’, Bell Labs Tech. J., 1996, 1, (2), pp. 41–59
[2]
Telatar I.E.: ‘Capacity of multi‐antenna Gaussian channels’, Eur. Trans. Telecommun., 1999, 10, (6), pp. 585–595
[3]
Zhou S., Zhao M., Xu X. et al.: ‘Distributed wireless communication system: a new architecture for future public wireless access’, IEEE Commun. Mag., 2003, 41, (3), pp. 108–113
[4]
Clark M.V., Willis T.M., Greenstein L.J. et al.: ‘Distributed versus centralised antenna arrays in broadband wireless networks’. VTS 53rd Proc. IEEE Vehicular Technology Conf. (VTC 2001 Spring), Rhodes, Greece, May 2001, vol. 1, pp. 33–37
[5]
Saleh A.A., Rustako A., Roman R.: ‘Distributed antennas for indoor radio communications’, IEEE Trans. Commun., 1987, 35, (12), pp. 1245–1251
[6]
Roh W., Paulraj A.: ‘Outage performance of the distributed antenna systems in a composite fading channel’. Proc. 56th IEEE Vehicular Technology Conf. (VTC), Vancouver, BC, Canada, Canada, September 2002, vol. 3, pp. 1520–1524
[7]
Dai H.: ‘Distributed versus co‐located MIMO systems with correlated fading and shadowing’. Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) (4), Toulouse, France, May 2006, pp. 561–564
[8]
Zhang H., Dai H.: ‘On the capacity of distributed MIMO systems’. Proc. Conf. on Information Sciences and Systems (CISS), Athens, Greece, September 2007
[9]
Wang D., Wang J., You X. et al.: ‘Spectral efficiency of distributed MIMO systems’, IEEE J. Sel. Areas Commun., 2013, 31, (10), pp. 2112–2127
[10]
Gao X.C., Zhang J.K., Jin J. et al.: ‘Optimal diagonal power loading minimising asymptotic symbol error probability for distributed MIMO systems with ZF receivers’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 7818–7823
[11]
Suzuki H.: ‘A statistical model for urban radio propogation’, IEEE Trans. Commun., 1977, 25, (7), pp. 673–680
[12]
Matthaiou M., Chatzidiamantis N.D., Karagiannidis G.K. et al.: ‘ZF detectors over correlated K fading MIMO channels’, IEEE Trans. Commun., 2011, 59, (6), pp. 1591–1603
[13]
Agrawal R.: ‘On efficacy of Rayleigh‐inverse Gaussian distribution over K‐distribution for wireless fading channels’, Wirel. Commun. Mob. Comput., 2007, 7, (1), pp. 1–7
[14]
Trigui I., Laourine A., Affes S. et al.: ‘The inverse Gaussian distribution in wireless channels: Second‐order statistics and channel capacity’, IEEE Trans. Commun., 2012, 60, (11), pp. 3167–3173
[15]
Laourine A., Alouini M.S., Affes S. et al.: ‘On the performance analysis of composite multipath/shadowing channels using the G‐distribution’, IEEE Trans. Commun., 2009, 57, (4), pp. 1162–1170
[16]
Pradhan B.B., Roy L.P.: ‘Performance assessment of correlated Rayleigh‐Inverse Gaussian fading channel over distributed MIMO systems with ZF detectors’, IET Commun., 2018, 12, (15), pp. 1822–1833
[17]
Zhong C., Matthaiou M., Karagiannidis G.K. et al.: ‘Capacity bounds for AF dual‐hop relaying in G fading channels’, IEEE Trans. Veh. Technol., 2012, 61, (4), pp. 1730–1740
[18]
Chatzidiamantis N.D., Sandalidis H.G., Karagiannidis G.K. et al.: ‘Inverse Gaussian modeling of turbulence‐induced fading in free‐space optical systems’, J. Lightw. Technol., 2011, 29, (10), pp. 1590–1596
[19]
Rusek F., Persson D., Lau B.K. et al.: ‘Scaling up MIMO: Opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 40–60
[20]
Yang H., Marzetta T.L.: ‘Performance of conjugate and zero‐forcing beamforming in large‐scale antenna systems’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 172–179
[21]
Ngo H.Q., Larsson E.G., Marzetta T.L.: ‘Energy and spectral efficiency of very large multiuser MIMO systems’, IEEE Trans. Commun., 2013, 61, (4), pp. 1436–1449
[22]
Björnson E., Hoydis J., Kountouris M. et al.: ‘Massive MIMO systems with non‐ideal hardware: Energy efficiency, estimation, and capacity limits’, IEEE Trans. Inf. Theory, 2014, 60, (11), pp. 7112–7139
[23]
Zhang J., Wen C.K., Jin S. et al.: ‘On capacity of large‐scale MIMO multiple access channels with distributed sets of correlated antennas’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 133–148
[24]
Joung J., Chia Y.K., Sun S.: ‘Energy‐efficient, large‐scale distributed‐antenna system (L‐DAS) for multiple users’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 954–965
[25]
Yang A., Jing Y., Xing C. et al.: ‘Performance analysis and location optimization for massive MIMO systems with circularly distributed antennas’, IEEE Trans. Wirel. Commun., 2015, 14, (10), pp. 5659–5671
[26]
Jiang F., Chen J., Swindlehurst A.L. et al.: ‘Massive MIMO for wireless sensing with a coherent multiple access channel’, IEEE Trans. Signal Process., 2015, 63, (12), pp. 3005–3017
[27]
Kamga G.N., Xia M., Aïssa S.: ‘Spectral‐efficiency analysis of massive MIMO systems in centralised and distributed schemes’, IEEE Trans. Commun., 2016, 64, (5), pp. 1930–1941
[28]
Gopal V., Matthaiou M., Zhong C.: ‘Performance analysis of distributed MIMO systems in Rayleigh/inverse‐Gaussian fading channels’. Proc. IEEE GLOBECOM, Anaheim, CA, USA, December 2012, pp. 2468–2474
[29]
Matthaiou M., Zhong C., McKay M.R. et al.: ‘Sum rate analysis of ZF receivers in distributed MIMO systems’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 180–191
[30]
Almelah H.B., Hamdi K.A.: ‘Spectral efficiency of distributed large‐scale MIMO systems with ZF receivers’, IEEE Trans. Veh. Technol., 2017, 66, (6), pp. 4834–4844
[31]
Ciuonzo D., Rossi P.S., Dey S.: ‘Massive MIMO channel‐aware decision fusion’, IEEE Trans. Signal Process., 2014, 63, (3), pp. 604–619
[32]
Shirazinia A., Dey S., Ciuonzo D. et al.: ‘Massive MIMO for decentralised estimation of a correlated source’, IEEE Trans. Signal Process., 2016, 64, (10), pp. 2499–2512
[33]
Ciuonzo D., Rossi P.S., Dey S.: ‘Massive MIMO meets decision fusion: decode‐and‐fuse vs. decode‐then‐fuse’. Proc. 8th Conf. on Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, June 2014, pp. 265–268
[34]
Zhong C., Matthaiou M., Huang A. et al.: ‘On the sum rate of MIMO Nakagami‐m fading channels with linear receivers’, IEEE Trans. Wirel. Commun., 2012, 11, (10), pp. 3651–3659
[35]
Abramowitz M., Stegun I.A.: ‘Handbook of mathematical functions, with formulas, graphs, and mathematical tables’ (Dover, New York, 1972, 9th edn.)
[36]
Prudnikov A., Brychkov Y.A., Marichev O. et al.: ‘Integrals and series’, Am. J. Phys., 1988, 56, (10), pp. 957–958
[37]
Oyman O., Nabar R.U., Bolcskei H. et al.: ‘Characterizing the statistical properties of mutual information in MIMO channels’, IEEE Trans. Signal Process., 2003, 51, (11), pp. 2784–2795
[38]
Simon M.K., Alouini M.S.: ‘Digital communication over fading channels’, vol. 95 (John Wiley & Sons, New Jersey, US, 2005)
[39]
Yang N., Yeoh P.L., Elkashlan M. et al.: ‘Cascaded TAS/MRC in MIMO multiuser relay networks’, IEEE Trans. Wirel. Commun., 2012, 11, (10), pp. 3829–3839
[40]
Hamdi K.A.: ‘Capacity of MRC on correlated Rician fading channels’, IEEE Trans. Commun., 2008, 56, (5), pp. 708–711
[41]
Gradshteyn I.S., Ryzhik I.M.: ‘Table of integrals, series, and products’ (Academic Press, US, 2014)
[43]
Chhikara R.S., Folks J.L.: ‘Estimation of the inverse Gaussian distribution function’, J. Am. Stat. Assoc., 1974, 69, (345), pp. 250–254

Recommendations

Comments

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media