Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Affine‐scale invariant feature transform and two‐dimensional principal component analysis: : a novel framework for affine and scale invariant face recognition

Published: 01 February 2016 Publication History

Abstract

Face recognition (FR) is one of the most effervescent fields of research with extensive applications that span numerous domains, and it stands resolutely as one of the most challenging problems in computer vision. The accuracy of FR systems is severely affected when two images under consideration for a match, vary in their scale and/or affine angles. The prevalent affine and scale invariant recognition systems have been predominantly developed only for objects, and hence in this study, the authors propose a novel approach for faces based on the affine‐SIFT (ASIFT) and two‐dimensional principal component analysis (2DPCA) techniques, to accomplish the formidable task of facial image recognition, invariant of scale and affine angles, i.e. the ability to simulate with enough accuracy, all the distortions caused by the differences in resolution and the variation of the camera optical axis direction. In the formulation of ASIFT‐2DPCA, they investigate three different variants of 2DPCA: classical 2DPCA, quaternion 2DPCA and sparse 2DPCA to gauge as to which is more effective. The authors'experimentations will demonstrate that the proposed approach can robustly handle affine and scale variations, and hence provide better accuracy and matching performance than the state‐of‐the‐art methodologies.

7 References

[1]
Heisele, B., Ho, P., Wu, J., et al: ‘Face recognition: component‐based versus Global Approaches’, Comput. Vis. Image Underst., 2003, 91, (1–2), pp. 6–21
[2]
Electronic Frontier Foundation (eff.org) article ‘FBI Plans to Have 52 Million Photos in its NGI Face Recognition Database by Next Year’ (accessed August 26, 2014): https://www.eff.org/deeplinks/2014/04/fbi‐plans‐have‐52‐million‐photos‐its‐ngi‐face‐recognition‐database‐next‐year
[3]
New York Times article ‘N.S.A. Collecting Millions of Faces from Web Images’ (accessed August 26, 2014): http://www.nytimes.com/2014/06/01/us/nsa‐collecting‐millions‐of‐faces‐from‐web‐images.html?_r=0
[4]
Lowe, D.G.: ‘Distinctive image features from scale‐invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91–110
[5]
Morel, J.M., Yu, G.: ‘ASIFT: a new framework for fully affine invariant image comparison’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 438–469
[6]
Yu, G., Morel, J.M.: ‘A fully affine invariant image comparison method’. IEEE Proc. Int. Conf. Acoustics, Speech and Signal Processing, 2009, pp. 1597–1600
[7]
Morel, J.M., Yu, G.: ‘On the consistency of the SIFT method’. Inverse Problems and Imaging (IPI), 2008
[8]
Mikolajczyk, K., Schmid, C.: ‘Indexing based on scale invariant interest points’. Proc. ICCV, 2001, vol. 1, pp. 525–531
[9]
Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: ‘Affine invariant model‐based object recognition’, IEEE Trans. Robot. Autom., 1990, 6, (5), pp. 578–589
[10]
Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: ‘Object recognition by affine invariant matching’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Ann Arbor, Michigan, June, 1988, pp. 335–344
[11]
Mikolajczyk, K., Tuytelaars, T., Schmid, C., et al: ‘A comparison of affine region detectors’, IJCV, 2005, 65, (1), pp. 43–72
[12]
Mikolajczyk, K., Schmid, C.: ‘Scale and affine invariant interest point detectors’, IJCV, 2004, 60, (1), pp. 63–86
[13]
Wu, L., Zhou, P., Liu, S., et al: ‘A face authentication scheme based on affine‐SIFT (ASIFT) and structural similarity (SSIM)’. CCBR 2012, 2012 (LNCS, 7701), pp. 25–32
[14]
Wu, Y.‐S., Liu, H.‐S., Ju, G.‐H., et al: ‘Using the visual Words based on Affine‐SIFT descriptors for face recognition’. IEEE Signal & Information Processing Association Annual Summit and Conf. (APSIPA ASC), 2012 Asia‐Pacific, 2012, pp. 1–5
[15]
Qi, W., Hou, Y., Wu, L., et al: ‘A pose robust face recognition approach by combining PCA‐ASIFT and SSIM’, in (Eds.): ‘Biometric recognition’ (Springer International Publishing, 2014), pp. 163–172
[16]
Pritchard, D., Heidrich, W.: ‘Cloth motion capture’, Comput. Graph. Forum, 2003, 22, pp. 263–271
[17]
Matas, J., Chum, O., Urban, M., et al: ‘Robust widebaseline stereo from maximally stable extremal regions’, Image Vis. Comput., 2004, 22, (10), pp. 761–767
[18]
Jolliffe, I.T.: ‘Principal component analysis’ (Springer‐Verlag, New York, 1986)
[19]
Murase, H., Nayar, S.: ‘Detection of 3D objects in cluttered scenes using hierarchical eigenspace’, Pattern Recognit. Lett., 1997, 18, (4)
[20]
Turk, M., Pentland, A.: ‘Face recognition using eigenfaces’. Proc. of Computer Vision and Pattern Recognition (CVPR), 1991
[21]
Fergus, R., Perona, P., Zisserman, A.: ‘Object class recognition by unsupervised scale‐invariant learning’. Proc. of Computer Vision and Pattern Recognition (CVPR), June 2003
[22]
Ke, Y., Sukthankar, R.: ‘PCA‐SIFT: A more distinctive representation for local image descriptors’. Int. Conf. on Computer Vision and Pattern Recognition, 2004, pp. 506–513
[23]
Yang, J., Zhang, D., Frangi, A.F., et al: ‘Two‐dimensional PCA: a new approach to appearance‐based face representation and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (1), pp. 131–137
[24]
Xu, Y., Zhang, D., Yang, J.‐Y.: ‘A feature extraction method for use with bimodal biometrics’, Pattern Recognit., 2010, 43, (3), pp. 1106–1115
[25]
Xu, Y., Zhang, D., Yang, J., et al: ‘An approach for directly extracting features from matrix data and its application in face recognition’, Neurocomputing, 2008, 71, (10), pp. 1857–1865
[26]
Shi, L., Funt, B.: ‘Quaternion color texture segmentation’, Comput. Vis. Image Underst., 2007, 107, (1), pp. 88–96
[27]
Xu, X., Guo, Z., Song, C., et al: ‘Multispectral palmprint recognition using a quaternion matrix’, Sensors, 2012, 12, (4), pp. 4633–4647
[28]
Bihan, N.L., Sangwine, S.J.: ‘Quaternion principal component analysis of color images’. IEEE Proc. Int. Conf. in Image Processing (ICIP), 2003, vol. 1, p. I‐809
[29]
Meng, J., Zheng, X.: ‘Robust sparse 2DPCA and its application to face recognition’. IEEE Symp. on Photonics and Optoelectronics (SOPO), 2012, 2012, pp. 1–4
[30]
Fang, W.‐L., Yang, Y.‐K., Pan, J.‐K: ‘A low‐computation approach for human face recognition’, Int. J. Pattern Recogn. Artif. Intell., 2012, 26, (06), p. 1256015
[31]
Hamouz, M., Kittler, J., Kamarainen, J.‐K., et al: ‘Feature‐based affine‐invariant localization of faces’, PAMI, 2005, 27, (9), pp. 1490–1495
[32]
Lowe, D.G.: ‘Object recognition from local scale invariant features’. Proc. of Int. Conf. on Computer Vision, 1999, pp. 1150–1157
[33]
Abdul‐Jabbar Ameer‐Abdul, I., Tan, J., Hou, Z.: Adaptive PCA‐SIFT matching approach for Face recognition application : ‘Isra'a Abdul‐Ameer Abdul‐Jabbar, Jieqang Tan’. Proc. of the Int. Multi Conf. of Engineers and Computer Scientists 2014, 2014, vol. I
[34]
Muja, M., Lowe, D.G.: ‘Fast approximate nearest neighbors with automatic algorithmic configuration’. Proc. VISAPP, 2009
[35]
Wikipedia article: ‘Precision and Recall’: http://www.en.wikipedia.org/wiki/Precision_and_recall (accessed August 28, 2014)
[36]
Toh, K., Kim, J., Lee, S.: ‘Biometric scores fusion based on total error rate minimization’, Pattern Recognit., 2008, 41, (5), pp. 1066–1082
[37]
Biometric Solution Provider article: ‘False Acceptance Rate (FAR) & False Recognition Rate (FRR)’: http://www.bayometric.com/blog/false‐acceptance‐rate‐far‐false‐recognition‐rate‐frr (accessed August 28, 2014)
[38]
Poh, N., Bengio, S.: ‘Database protocol and tools for evaluating score‐level fusion algorithms in biometric authentication’, Pattern Recognit., 2006, 39, (2), pp. 223–233
[39]
Wikipedia article: ‘Confusion Matrix’: http://www.en.wikipedia.org/wiki/Confusion_matrix (accessed August 29, 2014)
[40]
AT&T Database of Faces ‘ORL Face Database’ AT&T Laboratories, Cambridge: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (accessed August 24, 2014)
[41]
Libor Spacek's Facial Images Databases ‘Grimace Face Database’: http://www.cmp.felk.cvut.cz/~spacelib/faces/grimace.html (accessed August 24, 2014)
[42]
Libor Spacek's Facial Images Databases ‘Face 95 Image Database’: http://www.cmp.felk.cvut.cz/~spacelib/faces/faces95.html (accessed August 24, 2014)
[43]
Libor Spacek's Facial Images Databases ‘Face 96 Image Database’: http://www.cmp.felk.cvut.cz/~spacelib/faces/faces96.html (accessed August 24, 2014)
[44]
UCSD Computer Vision Database ‘Yale Face Database’: http://www.vision.ucsd.edu/content/yale‐face‐database (accessed August 24, 2014)
[45]
Liao, S., Jain, A.: ‘A partial face recognition: an alignment free approach’. IEEE Int. Joint Conf. on Biometrics, 2011, pp. 1–8
[46]
Burges, C.J.C.: ‘A tutorial on support vector machines for pattern recognition’, Data Mining Knowl. Discovery, 1998, 2, (2), pp. 121–168

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IET Computer Vision
IET Computer Vision  Volume 10, Issue 1
February 2016
102 pages
EISSN:1751-9640
DOI:10.1049/cvi2.v10.1
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 01 February 2016

Author Tags

  1. principal component analysis
  2. face recognition
  3. transforms

Author Tags

  1. affine-SIFT technique
  2. two-dimensional principal component analysis
  3. FR systems
  4. affine and scale invariant recognition systems
  5. 2DPCA techniques
  6. facial image recognition

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media