Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Robust and computationally efficient online image stabilisation framework based on adaptive dual motion vector integration

Published: 28 June 2019 Publication History

Abstract

Image stabilisation aims to compensate and smoothen the effects of undesired trembling motion of cameras mounted on non‐static platforms. It becomes quite a challenging task in the case of moving platforms, such as ground vehicles, unmanned aerial vehicles, and handheld devices. Many satisfactory solutions to the image stabilisation problem are proposed in the recent literature, but most of these methods are not adaptable for handling a wide range of intentional motions with minimum lag, especially in real‐time scenarios. In this study, the authors propose an online two‐dimensional image stabilisation technique based on dual motion vector integration, which is a novel adaptive motion smoothing technique that employs an average length of motion vectors to estimate the intentional motion. The overall computational cost of the proposed system is significantly reduced by employing frame‐shaking judgment that only allows processing of jittering frames. Promising experimental results have been obtained on challenging videos obtained from hand‐held and vehicle‐mounted cameras which demonstrate the robustness and effectiveness of the proposed technique against feature point mismatching and presence of moving objects within the scene at a frame rate of 30 frames per second.

7 References

[1]
Hu, W.C., Chen, C.H., Chen, T.Y., et al: ‘Moving object detection and tracking from video captured by moving camera’, J. Vis. Commun. Image Represent., 2015, 30, pp. 164–180
[2]
Choi, W., Pantofaru, C., Savarese, S.: ‘A general framework for tracking multiple people from a moving camera’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (7), pp. 1577–1591
[3]
Hu, W.‐C.: ‘Real‐time on‐line video object segmentation based on motion detection without background construction’, Int. J. Innov. Comput. Inf. Control, 2011, 7, (4), pp. 1845–1860
[4]
Hu, W.‐C., Yang, C.‐Y., Huang, D.‐Y.: ‘Robust real‐time ship detection and tracking for visual surveillance of cage aquaculture’, J. Vis. Commun. Image Represent., 2011, 22, (6), pp. 543–555
[5]
Hu, W.C., Chen, C.H., Chen, C.M., et al: ‘Effective moving object detection from videos captured by a moving camera’, Intell. Data Anal. Appl., 2014, 1, pp. 343–353
[6]
Karpenko, A., Jacobs, D., Baek, J., et al: ‘Digital video stabilization and rolling shutter correction using gyroscopes’. CSTR 1, 2011
[7]
Yousaf, A., Khurshid, K., Khan, M.J., et al: ‘A survey on real time video stabilization methods for UAV's in infrared range’. IEEE Int. Conf. on Aerospace Science & Engineering, Islamabad, Pakistan, 2017, pp. 1–9
[8]
Cardani, B.: ‘Optical image stabilization for digital cameras’, IEEE Control Syst., 2006, 26, (2), pp. 21–22
[9]
Chang, H.C., Lai, S.H., Lu, K.R.: ‘A robust and efficient video stabilization algorithm’. IEEE Int. Conf. on Multimedia and Expo, Taipei, June 2004, pp. 29–321
[10]
Strzodka, R., Garbe, C.: ‘Real‐time motion estimation and visualization on graphics cards’. Proc. of the Conf. on Visualization, Austin, Texas, USA, 2004, pp. 545–552
[11]
Lee, K.Y., Chuang, Y.Y., Chen, B.Y., et al: ‘Video stabilization using robust feature trajectories’. IEEE 12th Int. Conf. on Computer Vision, Kyoto, 2009, pp. 1397–1404
[12]
Yang, J., Schonfeld, D., Mohamed, M.: ‘Robust video stabilization based on particle filter tracking of projected camera motion’, IEEE Trans. Circuits Syst. Video Technol., 2009, 19, (7), pp. 945–954
[13]
Wang, C., Kim, J.H., Byun, K.Y., et al: ‘Robust digital image stabilization using the Kalman filter’, IEEE Trans. Consum. Electron., 2009, 55, (1), pp. 6–14
[14]
Juan, L., Gwun, O.: ‘A comparison of SIFT, PCA‐SIFT and SURF’, Int. J. Image Process., 2009, 3, (4), pp. 143–152
[15]
Lowe, D.G.: ‘Object recognition from local scale‐invariant features’. The Proc. of the Seventh IEEE Int. Conf. on Computer Vision, Kerkyra, Greece, 1999, pp. 1150–11572
[16]
Alahi, A., Ortiz, R., Vandergheynst, P.: ‘Freak: fast retina keypoint’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, Rhode Island, 2012, pp. 510–517
[17]
Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded‐up robust features (SURF)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346–359
[18]
Leutenegger, S., Chli, M., Siegwart, R.Y.: ‘BRISK: binary robust invariant scalable key‐points’. IEEE Int. Conf. on Computer Vision (ICCV), Barcelona, 2011, pp. 2548–2555
[19]
Harris, C., Stephens, M.: ‘A combined corner and edge detector’. Alvey Vision Conf., Manchester, UK, 1988, vol. 15, no. 50, pp. 10–5244
[20]
Fischler, M.A., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Commun. ACM, 1981, 24, (6), pp. 381–395
[21]
Wang, Y., Hou, Z., Leman, K., et al: ‘Real‐time video stabilization for unmanned aerial vehicles’. MVA IAPR Conf. on Machine Vision Applications, Nara, 2011, pp. 336–339
[22]
Wang, Y., Chang, R., Chua, T.W., et al: ‘Video stabilization based on high degree b‐spline smoothing’. Proc. of the 21st Int. Conf. on Pattern Recognition, Tsukuba, Japan, 2012, pp. 3152–3155
[23]
Ryu, Y.G., Roh, H.C., Chung, M.J.: ‘Long‐time video stabilization using point‐feature trajectory smoothing’. IEEE Int. Conf. on Consumer Electronics, Las Vegas, 2011, pp. 189–190
[24]
Dong, J., Xia, Y.: ‘Real‐time video stabilization based on smoothing feature trajectories’, Appl. Mech. Mater., 2014, 519, pp. 640–643
[25]
Erturk, S.: ‘Image sequence stabilisation: motion vector integration (MVI) versus frame position smoothing (FPS)’. Proc. of the 2nd Int. Symp. Image and Signal Processing and Analysis, Pula, Croatia, 2001, pp. 266–271
[26]
Rawat, P., Singhai, J.: ‘Adaptive motion smoothening for video stabilization’, Int. J. Comput. Appl., 2013, 72, (20), pp. 14–20
[27]
Wu, S., Zhang, D.C., Zhang, Y., et al: ‘Adaptive smoothing in real‐time image stabilization’. Visual Information Processing XXI, Baltimore, 2012, p. 83990
[28]
Liu, F., Gleicher, M., Jin, H., et al: ‘Content‐preserving warps for 3D video stabilization’, ACM Trans. Graph., 2009, 28, (3), p. 44
[29]
Zhang, G., Hua, W., Qin, X., et al: ‘Video stabilization based on a 3D perspective camera model’, Vis. Comput., 2009, 25, (11), pp. 997–1008
[30]
Buehler, C., Bosse, M., McMillan, L.: ‘Non‐metric image‐based rendering for video stabilization’. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001, pp. 609–614
[31]
Goldstein, A., Fattal, R.: ‘Video stabilization using epipolar geometry’, ACM Trans. Graph., 2012, 31, (5), pp. 1–10
[32]
Liu, F., Gleicher, M., Wang, J., et al: ‘Subspace video stabilization’, ACM Trans. Graph., 2011, 30, (1), p. 4
[33]
Wang, Y.S., Liu, F., Hsu, P.S., et al: ‘Spatially and temporally optimized video stabilization’, IEEE Trans. Vis. Comput. Graphics, 2013, 17, pp. 1354–1361
[34]
Morimoto, C., Chellappa, R.: ‘Evaluation of image stabilization algorithms’. Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 1998, pp. 2789–2792
[35]
Matsushita, Y., Ofek, E., Ge, W., et al: ‘Full‐frame video stabilization with motion in painting’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (7), pp. 1150–1163
[36]
Erturk, S., Dennis, T.J.: ‘Image sequence stabilisation based on DFT filtering’, IEE Proc., Vis. Image Signal Process., 2000, 147, (2), pp. 95–102
[37]
Yang, J., Schonfeld, D., Chen, C., et al: ‘Online video stabilization based on particle filters’. IEEE Int. Conf. on Image Processing, Atlanta, GA, USA, 2006, pp. 1545–1548
[38]
Chen, C.H., Chen, T.Y., Hu, W.C., et al: ‘Video stabilization for fast moving camera based on feature point classification’. Robot, Vision and Signal Processing, Third Int. Conf., Kaohsiung, Taiwan, 2015, pp. 10–13
[39]
Litvin, A., Konrad, J., Karl, W.C.: ‘Probabilistic video stabilization using Kalman filtering and mosaicking’, Image Video Commun. Process., 2003, 5022, pp. 663–675
[40]
Erturk, S.: ‘Real‐time digital image stabilization using Kalman filters’, Real‐Time Imaging, 2002, 8, (4), pp. 317–328
[41]
Dong, J., Xia, Y., Yu, Q., et al: ‘Instantaneous video stabilization for unmanned aerial vehicles’, J. Electron. Imaging, 2014, 23, (1), p. 13002
[42]
Corsini, G., Diani, M., Masini, A.: ‘Video sequence stabilization for real‐time remote sensing applications’. Geoscience and Remote Sensing Symp., Denver, CO, USA, 2006, pp. 988–991
[43]
Hu, W.C., Chen, C.H., Chen, T.Y., et al: ‘Real‐time video stabilization for fast‐moving vehicle cameras’, Multimedia Tools Appl., 2018, 77, (1), pp. 1237–1260
[44]
Kim, S.K., Kang, S.J., Wang, T.S., et al: ‘Feature point classification based global motion estimation for video stabilization’, IEEE Trans. Consum. Electron., 2013, 59, (1), pp. 267–272
[45]
Liang, Y.M., Tyan, H.R., Chang, S.L., et al: ‘Video stabilization for a camcorder mounted on a moving vehicle’, IEEE Trans. Veh. Technol., 2004, 53, (6), pp. 1636–1648
[46]
Zhang, Y., Xie, M., Tang, D.: ‘A central sub‐image based global motion estimation method for in‐car video stabilization’. Knowledge Discovery and Data Mining, Phuket, Thailand, 2010, pp. 204–207
[47]
Aguilar, W.G., Angulo, C.: ‘Real‐time video stabilization without phantom movements for micro aerial vehicles’, EURASIP J. Image Video Process., 2014, 46, (1), p. 46
[48]
Liu, S., Yuan, L., Tan, P., et al: ‘Bundled camera paths for video stabilization’, ACM Trans. Graph., 2013, 32, (4), p. 78
[49]
Chen, C.H., Hsu, C.W., Chen, C.H.: ‘Video stabilization by feature‐block motion estimation’. IEEE 8th Int. Conf. on Intelligent Systems Design and Applications, Kaohsiung, Taiwan, 2008, pp. 557–560
[50]
[51]
Shen, H., Pan, Q., Cheng, Y., et al: ‘Fast video stabilization algorithm for UAV’. Intelligent Computing and Intelligent Systems, Shanghai, China, 2009, pp. 542–546
[52]
Dong, J., Liu, H.: ‘Video stabilization for strict real‐time applications’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (4), pp. 716–724
[53]
Vincent, O.R., Folorunso, O.: ‘A descriptive algorithm for Sobel image edge detection’. Proc. of Informing Science & IT Education Conf., Macon, United States, 2009, pp. 97–107
[54]
Kalal, Z., Mikolajczyk, K., Matas, J.: ‘Forward‐backward error: automatic detection of tracking failures’. IEEE Int. Conf. on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2756–2759
[55]
Ester, M., Kriegel, H.P., Sander, J., et al: ‘A density‐based algorithm for discovering clusters in large spatial databases with noise’. Second Int. Conf. on Knowledge Discovery and Data Mining, Portland, Oregon, 1996, pp. 226–231

Index Terms

  1. Robust and computationally efficient online image stabilisation framework based on adaptive dual motion vector integration
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image IET Computer Vision
            IET Computer Vision  Volume 13, Issue 5
            August 2019
            88 pages
            EISSN:1751-9640
            DOI:10.1049/cvi2.v13.5
            Issue’s Table of Contents

            Publisher

            John Wiley & Sons, Inc.

            United States

            Publication History

            Published: 28 June 2019

            Author Tags

            1. cameras
            2. video signal processing
            3. feature extraction
            4. smoothing methods
            5. image motion analysis
            6. vectors

            Author Tags

            1. adaptive dual motion vector integration
            2. nonstatic platforms
            3. intentional motion
            4. two-dimensional image stabilisation technique
            5. novel adaptive motion smoothing technique
            6. motion vectors
            7. vehicle-mounted cameras
            8. online image stabilisation framework

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 30 Aug 2024

            Other Metrics

            Citations

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media