MEDELLER
Abstract
Motivation: Membrane proteins (MPs) are important drug targets but knowledge of their exact structure is limited to relatively few examples. Existing homology-based structure prediction methods are designed for globular, water-soluble proteins. However, we are now beginning to have enough MP structures to justify the development of a homology-based approach specifically for them.
Results: We present a MP-specific homology-based coordinate generation method, MEDELLER, which is optimized to build highly reliable core models. The method outperforms the popular structure prediction programme Modeller on MPs. The comparison of the two methods was performed on 616 target–template pairs of MPs, which were classified into four test sets by their sequence identity. Across all targets, MEDELLER gave an average backbone root mean square deviation (RMSD) of 2.62 Å versus 3.16 Å for Modeller. On our ‘easy’ test set, MEDELLER achieves an average accuracy of 0.93 Å backbone RMSD versus 1.56 Å for Modeller.
Availability and Implementation: http://medeller.info; Implemented in Python, Bash and Perl CGI for use on Linux systems; Supplementary data are available at http://www.stats.ox.ac.uk/proteins/resources.
Contact: [email protected]
Supplementary information: Supplementary data are available at Bioinformatics online.
Recommendations
Brief communication: Computational analyses of mammalian lactate dehydrogenases: Human, mouse, opossum and platypus LDHs
Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11,...
Comments
Information & Contributors
Information
Published In
Publisher
Oxford University Press, Inc.
United States
Publication History
Published: 01 November 2010
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 15 Feb 2025