Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/ASE.2011.6100062acmconferencesArticle/Chapter ViewAbstractPublication PagesaseConference Proceedingsconference-collections
Article

A topic-based approach for narrowing the search space of buggy files from a bug report

Published: 06 November 2011 Publication History

Abstract

Locating buggy code is a time-consuming task in software development. Given a new bug report, developers must search through a large number of files in a project to locate buggy code. We propose BugScout, an automated approach to help developers reduce such efforts by narrowing the search space of buggy files when they are assigned to address a bug report. BugScout assumes that the textual contents of a bug report and that of its corresponding source code share some technical aspects of the system which can be used for locating buggy source files given a new bug report. We develop a specialized topic model that represents those technical aspects as topics in the textual contents of bug reports and source files, and correlates bug reports and corresponding buggy files via their shared topics. Our evaluation shows that BugScout can recommend buggy files correctly up to 45% of the cases with a recommended ranked list of 10 files.

References

[1]
H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic modeling. In ICSE '10, pages 95-104. ACM Press, 2010.
[2]
A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source code artifacts. In ICSE '10, pages 375-384. ACM Press, 2010.
[3]
R. M. Bell, T. J. Ostrand, and E. J. Weyuker. Looking for bugs in all the right places. In ISSTA '06, pages 61-72. ACM Press, 2006.
[4]
D. Blei, A.Y. Ng, and M. Jordan. Latent Dirichlet Allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993-1022.
[5]
C. Chang and C. Lin, LIBSVM: library for support vector machines.
[6]
G. Canfora and L. Cerulo. How software repositories can help in resolving a new change request. In Workshop on Empirical Studies in Reverse Engineering, 2005.
[7]
T. Griffiths, Gibbs sampling in the generative model of Latent Dirichlet Allocation. Technical Report, 2002.
[8]
A. E. Hassan. Predicting faults using the complexity of code changes. In ICSE '09, pages 78-88. IEEE CS, 2009.
[9]
S. Kim, T. Zimmermann, J. Whitehead, Jr., and A. Zeller. Predicting faults from cached history. In ICSE'07, pages 489-498. IEEE CS, 2007.
[10]
E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining concepts from code with probabilistic topic models. In ASE'07, ACM.
[11]
D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location via information retrieval based filtering of a single scenario execution trace. In ASE '07, pp. 234-243. ACM Press, 2007.
[12]
S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization using latent dirichlet allocation. J. of Inf. Softw. Technol., 52(9):972-990, 2010.
[13]
A. Marcus and J. I. Maletic. Recovering documentation to source code traceability links using Latent Semantic Indexing. In ICSE'03, IEEE.
[14]
T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE TSE, 33(1):2-13, 2007.
[15]
R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. In ICSE '08, pages 181-190. ACM Press, 2008.
[16]
N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In ICSE '06, pages 452-461. ACM Press, 2006.
[17]
N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. Change bursts as defect predictors. In ISSRE'10, pp. 309-318. IEEE CS.
[18]
T. J. Ostrand, E. J. Weyuker, R. Bell. Predicting the location and number of faults in large software systems. IEEE TSE, 31(4):340-355, 2005.
[19]
R. Premraj, I.-X. Chen, H. Jaygarl, T.N. Nguyen, T. Zimmermann, S. Kim, and A. Zeller. Where should I fix this bug? (bugtalks.wikispaces.com), 2008.
[20]
A. E. Raftery and S. Lewis. How Many Iterations in the Gibbs Sampler. In Bayesian Statistics 4. Oxford University Press, pp. 763-773, 1992.
[21]
J. Ratzinger, M. Pinzger, and H. Gall. EQ-mine: Predicting short-term defects for software evolution. In FASE'07, pp. 12-26. Springer-Verlag.
[22]
J. Sliwerski, T. Zimmermann, and A. Zeller. Hatari: raising risk awareness. In ESEC/FSE-13, pages 107-110. ACM Press, 2005.
[23]
T. Zimmermann and N. Nagappan. Predicting defects using network analysis on dependency graphs. In ICSE'08, pp. 531-540. ACM, 2008.
[24]
V. Dallmeier and T. Zimmermann. Extraction of bug localization benchmarks from history. In ASE'07, pages 433-436. ACM Press, 2007.

Cited By

View all
  • (2024)FBDetect: Catching Tiny Performance Regressions at Hyperscale through In-Production MonitoringProceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles10.1145/3694715.3695977(522-540)Online publication date: 4-Nov-2024
  • (2024)Vulnerability Root Cause Function Locating For Java VulnerabilitiesProceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings10.1145/3639478.3641225(444-446)Online publication date: 14-Apr-2024
  • (2024)Reusing Convolutional Neural Network Models through Modularization and CompositionACM Transactions on Software Engineering and Methodology10.1145/363274433:3(1-39)Online publication date: 15-Mar-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASE '11: Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering
November 2011
677 pages
ISBN:9781457716386

Sponsors

Publisher

IEEE Computer Society

United States

Publication History

Published: 06 November 2011

Check for updates

Qualifiers

  • Article

Conference

ASE '11
Sponsor:

Acceptance Rates

Overall Acceptance Rate 82 of 337 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)2
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)FBDetect: Catching Tiny Performance Regressions at Hyperscale through In-Production MonitoringProceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles10.1145/3694715.3695977(522-540)Online publication date: 4-Nov-2024
  • (2024)Vulnerability Root Cause Function Locating For Java VulnerabilitiesProceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings10.1145/3639478.3641225(444-446)Online publication date: 14-Apr-2024
  • (2024)Reusing Convolutional Neural Network Models through Modularization and CompositionACM Transactions on Software Engineering and Methodology10.1145/363274433:3(1-39)Online publication date: 15-Mar-2024
  • (2024)Empirical Investigation of Accessibility Bug Reports in Mobile Platforms: A Chromium Case StudyProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642508(1-17)Online publication date: 11-May-2024
  • (2023)Big Code Search: A BibliographyACM Computing Surveys10.1145/360490556:1(1-49)Online publication date: 26-Aug-2023
  • (2023)Analyzing Accessibility Reviews Associated with Visual Disabilities or Eye ConditionsProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581315(1-14)Online publication date: 19-Apr-2023
  • (2023)A first look at bug report templates on GitHubJournal of Systems and Software10.1016/j.jss.2023.111709202:COnline publication date: 1-Aug-2023
  • (2022)Locating Faulty Source Code Files to Fix Bug ReportsInternational Journal of Open Source Software and Processes10.4018/IJOSSP.30879113:1(1-15)Online publication date: 16-Sep-2022
  • (2022)Fast changeset-based bug localization with BERTProceedings of the 44th International Conference on Software Engineering10.1145/3510003.3510042(946-957)Online publication date: 21-May-2022
  • (2022)Predictive Models in Software Engineering: Challenges and OpportunitiesACM Transactions on Software Engineering and Methodology10.1145/350350931:3(1-72)Online publication date: 9-Apr-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media