Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/BioMedCom.2012.9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Performance Analyses of a Parallel Verlet Neighbor List Algorithm for GPU-Optimized MD Simulations

Published: 14 December 2012 Publication History

Abstract

Molecular dynamics (MD) simulations provide a molecular-resolution physical description of the folding and assembly processes, but the size and the timescales of simulations are limited because the underlying algorithm is computationally demanding. We recently introduced a parallel neighbor list algorithm that was specifically optimized for MD simulations on GPUs. In our present study, we analyze the performance of the algorithm in our MD simulation software, and we observe that the major of the overall execution time is spent performing the force calculations and the evaluation of the neighbor list and pair lists. The overall speedup of the GPU-optimized MD simulations as compared to the CPU-optimized version is N-dependent and ~30x for the full 70s ribosome (10,219 beads). The pair and neighbor list evaluations have performance speedups of ~25x and ~55x, respectively. We then make direct How biomolecules fold and assemble into well-defined structures that correspond to cellular functions is a fundamental problem in biophysics with direct biomedical application because some functions lead to diseases such as Alzheimer's, Parkinson's, and cancer. Molecular dynamics (MD) simulations provide a molecular-resolution physical description of the folding and assembly processes, but the computational demands of the algorithms restrict the size and the timescales one can simulate. In a recent study, we introduced a parallel neighbor list algorithm that was specifically optimized for MD simulations on GPUs. We now analyze the performance of our MD simulation code that incorporates the algorithm, and we observe that the force calculations and the evaluation of the neighbor list and pair lists constitutes a majority of the overall execution time. The overall speedup of the GPU-optimized MD simulations as compared to the CPU-optimized version is N-dependent and ~30x for the full 70s ribosome (10,219 beads). The pair and neighbor list evaluations have performance speedups of ~25x and ~55x, respectively. We then make direct comparisons with the performance of our MD simulation code with that of the SOP model implemented in the simulation code of HOOMD, a leading general particle dynamics simulation package that is specifically optimized for GPUs.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
BIOMEDCOM '12: Proceedings of the 2012 ASE/IEEE International Conference on BioMedical Computing
December 2012
152 pages
ISBN:9780769549385

Publisher

IEEE Computer Society

United States

Publication History

Published: 14 December 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media