Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey

Published: 13 July 2023 Publication History
  • Get Citation Alerts
  • Abstract

    Today’s Internet is experiencing a massive number of users with a continuously increasing need for data, which is the leading cause of introduced limitations among security and privacy issues. To overcome these limitations, a shift from host-centric to data-centric is proposed, and in this context, Information-Centric Networking (ICN) represents a promising solution. Nevertheless, unsettling the current Internet’s network layer – i.e., Internet Protocol (IP) – with ICN is a challenging, expensive task since it requires worldwide coordination among Internet Service Providers (ISPs), backbone, and Autonomous Services (AS). Therefore, researchers foresee that the replacement process of the current Internet will transition through the coexistence of IP and ICN. In this perspective, novel architectures combine IP and ICN protocols. However, only a few of the proposed architectures place the security-by-design feature. Therefore, this article provides the first comprehensive Security and Privacy (SP) analysis of the state-of-the-art IP-ICN coexistence architectures by horizontally comparing the SP features among three deployment approaches – i.e., overlay, underlay, and hybrid – and vertically comparing among the ten considered SP features. Lastly, the article sheds light on the open issues and possible future directions for IP-ICN coexistence. Our analysis shows that most architectures fail to provide several SP features, including data and traffic flow confidentiality, availability, and anonymity of communication. Thus, this article shows the secure combination of current and future protocol stacks during the coexistence phase that the Internet will definitely walk across.

    References

    [1]
    (Cisco, San Jose, CA, USA). Cisco Visual Networking Index by 2023, (2021). [Online]. Available: https://tinyurl.com/8p3p49se
    [2]
    G. Tsirtsis and P. Srisuresh, “Network address translation—Protocol translation (NAT-PT),” IETF, RFC 2766, 2000.
    [3]
    (Cisco, San Jose, CA, USA). Cisco Visual Networking Index 2021 Highlights, (2021). [Online]. Available: https://tinyurl.com/r8z4s79t
    [4]
    M. Ambrosin, A. Compagno, M. Conti, C. Ghali, and G. Tsudik, “Security and privacy analysis of national science foundation future Internet architectures,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1418–1442, 2nd Quart., 2018.
    [5]
    A. Seetharam, “On caching and routing in information-centric networks,” IEEE Commun. Mag., vol. 56, no. 3, pp. 204–209, Mar. 2018.
    [6]
    A. Ioannou and S. Weber, “A survey of caching policies and forwarding mechanisms in information-centric networking,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2847–2886, 4th Quart., 2016.
    [7]
    R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy, and access control in information-centric networking: A survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 566–600, 1st Quart., 2018.
    [8]
    X. Fu, D. Kutscher, S. Misra, and R. Li, “Information-centric networking security,” IEEE Commun. Mag., vol. 56, no. 11, pp. 60–61, Nov. 2018.
    [9]
    E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A survey of security attacks in information-centric networking,” IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1441–1454, 3rd Quart., 2015.
    [10]
    C. Fang, H. Yao, Z. Wang, W. Wu, X. Jin, and F. R. Yu, “A survey of mobile information-centric networking: Research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2353–2371, 3rd Quart., 2018.
    [11]
    G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Scalable mobile Backhauling via information-centric networking,” in Proc. IEEE Int. Workshop Local Metropolitan Area Netw. (LANMAN), Apr. 2015, pp. 1–6.
    [12]
    G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking: A survey,” Comput. Netw., vol. 57, no. 16, pp. 3128–3141, 2013.
    [13]
    G. Xylomenoset al., “A survey of information-centric networking research,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 1024–1049, 2nd Quart., 2014.
    [14]
    M. Tortelli, D. Rossi, G. Boggia, and L. A. Grieco, “ICN software tools: Survey and cross-comparison,” Simulat. Model. Pract. Theory, vol. 63, pp. 23–46, Apr. 2016.
    [15]
    M. Conti, A. Gangwal, M. Hassan, C. Lal, and E. Losiouk, “The road ahead for networking: A survey on ICN-IP coexistence solutions,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 2104–2129, 3rd Quart., 2020.
    [16]
    M. Amadeoet al., “Information-centric networking for the Internet of Things: Challenges and opportunities,” IEEE Netw., vol. 30, no. 2, pp. 92–100, Mar./Apr. 2016.
    [17]
    S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent advances in information-centric networking-based Internet of Things (ICN-IoT),” IEEE Internet Things J., vol. 6, no. 2, pp. 2128–2158, Apr. 2019.
    [18]
    D. Mars, S. M. Gammar, A. Lahmadi, and L. A. Saïdane, “Using information centric networking in Internet of Things: A survey,” Wireless Pers. Commun., vol. 105, no. 1, pp. 87–103, 2019.
    [19]
    A. Rahman, D. Trossen, D. Kutscher, and R. Ravindran, “Deployment considerations for information-centric networking (ICN),” IETF, RFC 8763, 2020.
    [20]
    K. Ramezanpour, J. Jagannath, and A. Jagannath, “Security and privacy vulnerabilities of 5G/6G and WiFi 6: Survey and research directions from a coexistence perspective,” Comput. Netw., vol. 221, Feb. 2023, Art. no.
    [21]
    S. Kent and R. Atkinson, “Security architecture for the Internet protocol,” IETF, RFC 2401, 1998.
    [22]
    R. J. Atkinson, “Security architecture for the Internet protocol,” IETF, RFC 1825, 1995.
    [23]
    S. T. Kent and R. J. Atkinson, “IP authentication header,” IETF, RFC 2402, 1998.
    [24]
    S. Kent and R. Atkinson, “IP encapsulating security payload (ESP),” IETF, RFC 2406, 1998.
    [25]
    D. R. Cheriton and M. Gritter. “TRIAD: A new next-generation Internet architecture.” 2000. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.5878
    [26]
    L. Zhanget al., “Named data networking,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, 2014.
    [27]
    ICNRG. “Information-centric networking research group.” 2021. [Online]. Available: https://irtf.org/icnrg
    [28]
    B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-centric networking,” IEEE Commun. Mag., vol. 50, no. 7, pp. 26–36, Jul. 2012.
    [29]
    D. Smetters and V. Jacobson, Securing Network Content, Palo Alto Res. Center, Palo Alto, CA, USA, 2009.
    [30]
    A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, “Naming in content-oriented architectures,” in Proc. ACM SIGCOMM Workshop Inf. Centric Netw. (ICN), Toronto, ON, Canada, Aug. 2011, pp. 1–6.
    [31]
    A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest flooding attack and countermeasures in named data networking,” in Proc. IFIP Netw. Conf., Brooklyn, NY, USA, May 2013, pp. 1–9.
    [32]
    P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in named data networking,” in Proc. 22nd Int. Conf. Comput. Commun. Netw. (ICCCN), Jul./Aug. 2013, pp. 1–7.
    [33]
    A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “Poseidon: Mitigating interest flooding DDoS attacks in named data networking,” in Proc. 38th Annu. IEEE Conf. Local Comput. Netw., Oct. 2013, pp. 630–638.
    [34]
    H. Dai, Y. Wang, J. Fan, and B. Liu, “Mitigate DDoS attacks in NDN by interest traceback,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Turin, Italy, 2013, pp. 381–386.
    [35]
    A. Compagno, M. Conti, P. Gasti, and G. Tsudik, “NDN interest flooding attacks and countermeasures,” in Proc. Annu. Comput. Security Appl. Conf., 2012, pp. 1–2.
    [36]
    J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Securing instrumented environments over content-centric networking: The case of lighting control,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Turin, Italy, 2013, pp. 393–398.
    [37]
    J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Secure sensing over named data networking,” in Proc. IEEE 13th Int. Symp. Netw. Comput. Appl. (NCA), Cambridge, MA, USA, Aug. 2014, pp. 175–180.
    [38]
    M. Ambrosin, M. Conti, P. Gasti, and G. Tsudik, “Covert ephemeral communication in named data networking,” in Proc. 9th ACM Symp. Inf. Comput. Commun. Security (ASIA CCS), Kyoto, Japan, Jun. 2014, pp. 15–26.
    [39]
    A. Chaabane, E. De Cristofaro, M. A. Kaafar, and E. Uzun, “Privacy in content-oriented networking: Threats and countermeasures,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp. 25–33, 2013.
    [40]
    P. Gasti and G. Tsudik, “Content-centric and named-data networking security: The good, the bad and the rest,” in Proc. IEEE Int. Symp. Local Metropolitan Area Netw. (LANMAN), Washington, DC, USA, Jun. 2018, pp. 1–6.
    [41]
    Y. Yu, Y. Li, X. Du, R. Chen, and B. Yang, “Content protection in named data networking: Challenges and potential solutions,” IEEE Commun. Mag., vol. 56, no. 11, pp. 82–87, Nov. 2018.
    [42]
    H. Farhady, H. Lee, and A. Nakao, “Software-defined networking: A survey,” Comput. Netw., vol. 81, pp. 79–95, Apr. 2015.
    [43]
    D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.
    [44]
    N. McKeownet al., “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.
    [45]
    M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-defined networking security: Pros and cons,” IEEE Commun. Mag., vol. 53, no. 6, pp. 73–79, Jun. 2015.
    [46]
    Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, 1st Quart., 2016.
    [47]
    Q. Yan and F. R. Yu, “Distributed denial of service attacks in software-defined networking with cloud computing,” IEEE Commun. Mag., vol. 53, no. 4, pp. 52–59, Apr. 2015.
    [48]
    Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos, and M. Imran, “Security in software-defined networking: Threats and countermeasures,” Mobile Netw. Appl., vol. 21, no. 5, pp. 764–776, 2016.
    [49]
    I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software defined networks: A survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2317–2346, 4th Quart., 2015.
    [50]
    I. Alsmadi and D. Xu, “Security of software defined networks: A survey,” Comput. Security, vol. 53, pp. 79–108, Sep. 2015.
    [51]
    M. Rahouti, K. Xiong, Y. Xin, S. K. Jagatheesaperumal, M. Ayyash, and M. Shaheed, “SDN security review: Threat taxonomy, implications, and open challenges,” IEEE Access, vol. 10, pp. 45820–45854, 2022.
    [52]
    L. F. Eliyan and R. D. Pietro, “DoS and DDoS attacks in software defined networks: A survey of existing solutions and research challenges,” Future Gener. Comput. Syst., vol. 122, pp. 149–171, Sep. 2021.
    [53]
    A. Vakali and G. Pallis, “Content delivery networks: Status and trends,” IEEE Internet Comput., vol. 7, no. 6, pp. 68–74, Nov./Dec. 2003.
    [54]
    A.-M. K. Pathanet al., “A taxonomy and survey of content delivery networks,” Grid Comput. Distrib. Syst. Lab., Univ. Melbourne, Parkville, VIC, Australia, Rep. 4, 2007.
    [55]
    G. Peng, “CDN: Content distribution network,” 2004, arxiv.cs.NI/0411069.
    [56]
    M. Ghaznavi, E. Jalalpour, M. A. Salahuddin, R. Boutaba, D. Migault, and S. Preda, “Content delivery network security: A survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2166–2190, 4th Quart., 2021.
    [57]
    I. Mubarok, K. Lee, S. Lee, and H. Lee, “Lightweight resource management for DDoS traffic isolation in a cloud environment,” in Proc. ICT Syst. Security Privacy Protection 29th IFIP TC 11 Int. Conf. (SEC), vol. 428. Marrakech, Morocco, Jun. 2014, pp. 44–51.
    [58]
    H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your cache has fallen: Cache-poisoned denial-of-service attack,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security (CCS), Nov. 2019, pp. 1915–1936.
    [59]
    B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: Challenges and opportunities for innovations,” IEEE Commun. Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.
    [60]
    Y. Li and M. Chen, “Software-defined network function virtualization: A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.
    [61]
    W. Yang and C. J. Fung, “A survey on security in network functions virtualization,” in Proc. IEEE NetSoft Conf. Workshops (NetSoft), Seoul, South Korea, Jun. 2016, pp. 15–19.
    [62]
    J. Keeney, S. V. D. Meer, and L. Fallon, “Towards real-time management of virtualized telecommunication networks,” in Proc. 10th Int. Conf. Netw. Service Manag. (CNSM Workshop), Rio de Janeiro, Brazil, Nov. 2014, pp. 388–393.
    [63]
    A. M. Alwakeel, A. K. Alnaim, and E. B. Fernandez, “A survey of network function virtualization security,” in Proc. IEEE SoutheastCon, 2018, pp. 1–8.
    [64]
    S. C. Burleighet al., “Delay-tolerant networking: An approach to interplanetary Internet,” IEEE Commun. Mag., vol. 41, no. 6, pp. 128–136, Jun. 2003.
    [65]
    S.-A. Menesidou, V. Katos, and G. Kambourakis, “Cryptographic key management in delay tolerant networks: A survey,” Future Internet, vol. 9, no. 3, p. 26, 2017.
    [66]
    B. Nouret al., “A survey of Internet of Things communication using ICN: A use case perspective,” Comput. Commun., vols. 142–143, pp. 95–123, Jun. 2019.
    [67]
    I. U. Din, H. Asmat, and M. Guizani, “A review of information centric network-based Internet of Things: Communication architectures, design issues, and research opportunities,” Multimedia Tools Appl., vol. 78, no. 21, pp. 30241–30256, 2019.
    [68]
    A. Aboodi, T. C. Wan, and G. C. Sodhy, “Survey on the incorporation of NDN/CCN in IoT,” IEEE Access, vol. 7, pp. 71827–71858, 2019.
    [69]
    A. Djama, B. Djamaa, and M. R. Senouci, “Information-centric networking solutions for the Internet of Things: A systematic mapping review,” Comput. Commun., vol. 159, pp. 37–59, Jun. 2020.
    [70]
    A. Rahmanet al., “On the ICN-IoT with federated learning integration of communication: Concepts, security-privacy issues, applications, and future perspectives,” Future Gener. Comput. Syst., vol. 138, pp. 61–88, Jan. 2023.
    [71]
    G. Gür, P. Porambage, and M. Liyanage, “Convergence of ICN and MEC for 5G: Opportunities and challenges,” IEEE Commun. Stand. Mag., vol. 4, no. 4, pp. 64–71, Dec. 2020.
    [72]
    O. Serhane, K. Yahyaoui, B. Nour, and H. Moungla, “A survey of ICN content naming and in-network caching in 5G and beyond networks,” IEEE Internet Things J., vol. 8, no. 6, pp. 4081–4104, Mar. 2021.
    [73]
    H. Khelifi, S. Luo, B. Nour, and S. C. Shah, “Security and privacy issues in vehicular named data networks: An overview,” Mobile Inf. Syst., vol. 2018, Sep. 2018, Art. no.
    [74]
    M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric networking for connected vehicles: A survey and future perspectives,” IEEE Commun. Mag., vol. 54, no. 2, pp. 98–104, Feb. 2016.
    [75]
    X. Wang, X. Qian, and X. Wang, “Towards information-centric vehicular cloud: Technologies, challenges, and opportunities,” IEEE Wireless Commun., early access, Apr. 24, 2023. 10.1109/MWC.017.2200426.
    [76]
    S. Fayyaz, M. A. U. Rehman, M. S. ud Din, M. I. Biswas, A. K. Bashir, and B.-S. Kim, “Information-centric mobile networks: A survey, discussion, and future research directions,” IEEE Access, vol. 11, pp. 40328–40372, 2023.
    [77]
    S. S. Musa, M. Zennaro, M. Libsie, and E. Pietrosemoli, “Convergence of information-centric networks and edge intelligence for IoV: Challenges and future directions,” Future Internet, vol. 14, no. 7, p. 192, 2022.
    [78]
    R. W. Shirey, “Internet security glossary, version 2,” IETF, RFC 4949, 2007.
    [79]
    H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for message authentication,” 1997.
    [80]
    N. Fotiou, G. F. Marias, and G. C. Polyzos, “Access control enforcement delegation for information-centric networking architectures,” in Proc. ACM Inf. Centric Netw. Workshop, Helsinki, Finland, 2012, pp. 85–90.
    [81]
    S. Singh, “A trust based approach for secure access control in information centric network,” Int. J. Inf. Netw. Security, vol. 1, no. 2, p. 97, 2012.
    [82]
    B. Li, D. Huang, Z. Wang, and Y. Zhu, “Attribute-based access control for ICN naming scheme,” IEEE Trans. Depend. Secure Comput., vol. 15, no. 2, pp. 194–206, Mar./Apr. 2018.
    [83]
    J. Qian, “ACLA: A framework for access control list (ACL) analysis and optimization,” in Proc. Commun. Multimedia Security Issues New Century IFIP TC6/TC11 Int. Conf. Commun. Multimedia Security Issues, vol. 192, May 2001, p. 8.
    [84]
    R. Dingledine, N. Mathewson, and P. Syverson, “ToR: The second-generation onion router,” in Proc. 13th USENIX Security Symp., Aug. 2004, pp. 303–320.
    [85]
    D. Trossen and G. Parisis, “Designing and realizing an information-centric Internet,” IEEE Commun. Mag., vol. 50, no. 7, pp. 60–67, Jul. 2012.
    [86]
    S. Tarkoma, M. Ain, and K. Visala, “The publish/subscribe Internet routing paradigm (PSIRP): Designing the future Internet architecture,” in Towards the Future Internet: A European Research Perspective. Milton Keynes, U.K.: IOS Press, 2009, pp. 102–111.
    [87]
    C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl, “Network of information (NetInf)—An information-centric networking architecture,” Comput. Commun., vol. 36, no. 7, pp. 721–735, 2013.
    [88]
    S. Project. “FP7 network of information.” 2021. [Online]. Available: https://sail-project.eu/about-sail/netinf/index.html
    [89]
    S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keränen, and P. M. Hallam-Baker, “Naming things with hashes,” IETF, RFC 6920, 2013.
    [90]
    J. Shi and B. Zhang, “NDNLP: A link protocol for NDN,” NDN, Washington, DC, USA, Rep. NDN-0006, 2012.
    [91]
    NDN testbed.” 2021. [Online]. Available: https://named-data.net/ndn-testbed/
    [92]
    N. L. van Adrichem and F. A. Kuipers, “NDNFlow: Software-defined named data networking,” in Proc. 1st IEEE Conf. Netw. Softw. (NetSoft), Apr. 2015, pp. 1–5.
    [93]
    S. Shailendra, B. Panigrahi, H. K. Rath, and A. Simha, “A novel overlay architecture for information centric networking,” in Proc. 21st Nat. Conf. Commun. (NCC), Feb./Mar. 2015, pp. 1–6.
    [94]
    S. Agrawal, S. Shailendra, B. Panigrahi, H. K. Rath, and A. Simha, “O-ICN simulator (OICNSIM): An NS-3 based simulator for overlay information centric networking (O-ICN),” in Proc. 1st Workshop Complex Netw. Syst. Smart Infrastruct. (CNetSys@MobiCom), New Delhi, India, Oct./Nov. 2018, pp. 13–15.
    [95]
    A. Detti, N. B. Melazzi, S. Salsano, and M. Pomposini, “CONET: A content centric inter-networking architecture,” in Proc. ACM SIGCOMM Workshop Inf. Centric Netw. (ICN), Aug. 2011, pp. 50–55.
    [96]
    M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf, “Enabling ICN in IP networks using SDN,” in Proc. 21st IEEE Int. Conf. Netw. Protocols (ICNP), Oct. 2013, pp. 1–2.
    [97]
    NEC. “Trema OpenFlow controller.” 2022. [Online]. Available: https://trema.github.com/trema/
    [98]
    L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A. Detti, “Supporting information-centric functionality in software defined networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012, pp. 6645–6650.
    [99]
    A. Köpsel and H. Woesner, “OFELIA—PAN-European test facility for OpenFlow experimentation,” in Proc. Towards Service Based Internet 4th Eur. Conf. (ServiceWave), Poznan, Poland, vol. 6994. Oct. 2011, pp. 311–312.
    [100]
    P. Zuraniewski, N. van Adrichem, D. Ravesteijn, W. Ijntema, C. Papadopoulos, and C. Fan, “Facilitating ICN deployment with an extended Openflow protocol,” in Proc. 4th ACM Conf. Inf. Centric Netw. (ICN), Sep. 2017, pp. 123–133.
    [101]
    S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture for user-level packet capture,” in Proc. USENIX Winter Tech. Conf., vol. 46. San Diego, CA, USA, 1993, pp. 259–270.
    [102]
    N. L. van Adrichem, F. Iqbal, and F. A. Kuipers, “Backup rules in software-defined networks,” in Proc. IEEE Conf. Netw. Function Virtual. Softw. Defined Netw. (NFV-SDN), Nov. 2016, pp. 179–185.
    [103]
    C. Fan, S. Shannigrahi, S. Di Benedetto, C. Olschanowsky, C. Papadopoulos, and H. Newman, “Managing scientific data with named data networking,” in Proc. 5th Int. Workshop Netw. Aware Data Manag. (NDM), Austin, TX, USA, Nov. 2015, p. 7.
    [104]
    D. Syriveliset al., “Pursuing a software defined information-centric network,” in Proc. Eur. Workshop Softw. Defined Netw. (EWSDN), Darmstadt, Germany, Oct. 2012, pp. 103–108.
    [105]
    P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander, “LIPSIN: Line speed publish/subscribe inter-networking,” in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Comput. Commun., Barcelona, Spain, Aug. 2009, pp. 195–206.
    [106]
    K. Pechlivanidou, K. Katsalis, I. Igoumenos, D. Katsaros, T. Korakis, and L. Tassiulas, “NITOS testbed: A cloud based wireless experimentation facility,” in Proc. 26th Int. Teletraffic Congr. (ITC), Karlskrona, Sweden, Sep. 2014, pp. 1–6.
    [107]
    L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, G. Mühl, and T. Darmstadt, “Security aspects in publish/subscribe systems,” in Proc. 3rd Int. Workshop Distrib. Event Syst. (DEBS), Edinburgh, U.K., 2004, pp. 44–49.
    [108]
    C. Esposito and M. Ciampi, “On security in publish/subscribe services: A survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 966–997, 2nd Quart., 2015.
    [109]
    G. Caronni, “Walking the Web of trust,” in Proc. 9th IEEE Int. Workshops Enabl. Technol. Infrast. Collaborative Enterprises (WETICE), Gaithersburg, MD, USA, Jun. 2000, pp. 153–158.
    [110]
    Z. Zhanget al., “An overview of security support in named data networking,” IEEE Commun. Mag., vol. 56, no. 11, pp. 62–68, Nov. 2018.
    [111]
    R. L. Rivest and B. Lampson, SDSI—A Simple Distributed Security Infrastructure, Crypto, Singapore, 1996.
    [112]
    M. Casadoet al., “Rethinking enterprise network control,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009.
    [113]
    A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic access control for enterprise networks,” in Proc. 1st ACM SIGCOMM Workshop Res. Enterprise Netw. (WREN), Barcelona, Spain, Aug. 2009, pp. 11–18.
    [114]
    N. Li, “Research on Diffie–Hellman key exchange protocol,” in Proc. IEEE 2nd Int. Conf. Comput. Eng. Technol., vol. 4, 2010, p. 634.
    [115]
    M. Mosko, E. Uzun, and C. A. Wood, “Mobile sessions in content-centric networks,” in Proc. IFIP Netw. Conf. IFIP Netw. Workshops, Stockholm, Sweden, Jun. 2017, pp. 1–9.
    [116]
    Z. Zhang, Y. Yu, S. K. Ramani, A. Afanasyev, and L. Zhang, “NAC: Automating access control via named data,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Los Angeles, CA, USA, Oct. 2018, pp. 626–633.
    [117]
    E. Bardhi, M. Conti, R. Lazzeretti, and E. Losiouk, “ICN PATTA: ICN privacy attack through traffic analysis,” in Proc. 46th IEEE Conf. Local Comput. Netw. (LCN), Edmonton, AB, Canada, Oct. 2021, pp. 443–446.
    [118]
    K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), Hong Kong, 2013, pp. 151–152.
    [119]
    B. Lee, H. Jeon, S. Yoon, and H. Song, “Towards a CDN over ICN,” in Proc. Int. Conf. Data Commun. Netw. e-Bus. Opt. Commun. Syst. (DCNET, ICE-B OPTICS), Rome, Italy, Jul. 2012, pp. 46–51.
    [120]
    O. P. Truonget al., “Deployment and securisation of new functionalities in virtualized networking environnements,” Syst. Paris Region Syst. ICT Cluster, Paris, France, Rep. ANR-14-CE28-0001, 2017.
    [121]
    C. Boettiger, “An introduction to docker for reproducible research,” ACM SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, 2015.
    [122]
    D. Trossen, M. J. Reed, J. Riihijärvi, M. Georgiades, N. Fotiou, and G. Xylomenos, “IP over ICN—The better IP?” in Proc. IEEE Eur. Conf. Netw. Commun. (EuCNC), Paris, France, Jun./Jul. 2015, pp. 413–417.
    [123]
    F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and OpenFlow: From concept to implementation,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.
    [124]
    D. Trossen, A. Sathiaseelan, and J. Ott, “Towards an information centric network architecture for universal Internet access,” ACM SIGCOMM Comput. Commun. Rev., vol. 46, no. 1, pp. 44–49, 2016.
    [125]
    G. White and G. Rutz, Content Delivery With Content-Centric Networking, CableLabs, Louisville, KY, USA, 2016, pp. 1–26.
    [126]
    M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Managing the evolution to future Internet architectures and seamless interoperation,” in Proc. IEEE 29th Int. Conf. Comput. Commun. Netw. (ICCCN), Honolulu, HI, USA, Aug. 2020, pp. 1–11.
    [127]
    D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “MobilityFirst: A robust and trustworthy mobility-centric architecture for the future Internet,” ACM SIGMOBILE Mobile Comput. Commun. Rev., vol. 16, no. 3, pp. 2–13, 2012.
    [128]
    P. Resnick and R. Sami, “Sybilproof transitive trust protocols,” in Proc. 10th ACM Conf. Electron. Commerce (EC), Jul. 2009, pp. 345–354.
    [129]
    S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Content delivery networks: Protection or threat?” in Proc. 14th Eur. Symp. Res. Comput. Security (ESORICS), vol. 5789. Saint-Malo, France, Sep. 2009, pp. 371–389.
    [130]
    S. Lal, T. Taleb, and A. Dutta, “NFV: Security threats and best practices,” IEEE Commun. Mag., vol. 55, no. 8, pp. 211–217, Aug. 2017.
    [131]
    H. Wuet al., “On incremental deployment of named data networking in local area networks,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), May 2017, pp. 82–94.
    [132]
    S. Mansoor and R. Patil, “System and method for facilitating secure integration and communication of cloud services and enterprise applications,” U.S. Patent 8 504 609, Jun.–Aug. 2013.
    [133]
    N. B. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and L. Veltri, “An OpenFlow-based testbed for information centric networking,” in Proc. IEEE Future Netw. Mobile Summit, Berlin, Germany, Jul. 2012, pp. 1–9.
    [134]
    L. Heath, H. Owen, R. Beyah, and R. State, “CLIP: Content labeling in IPv6, a layer 3 protocol for information centric networking,” in Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungary, Jun. 2013, pp. 3732–3737.
    [135]
    F. Fahrianto and N. Kamiyama, “Comparison of migration approaches of ICN/NDN on IP networks,” in Proc. IEEE 5th Int. Conf. Inf. Comput. (ICIC), 2020, pp. 1–7.
    [136]
    M. Ion, J. Zhang, and E. M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM Conf. SIGCOMM, Hong Kong, Aug. 2013, pp. 513–514.
    [137]
    C. Ghali, G. Tsudik, and E. Uzun, “Network-layer trust in named-data networking,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 12–19, 2014.
    [138]
    M. Conti, P. Gasti, and M. Teoli, “A lightweight mechanism for detection of cache pollution attacks in named data networking,” Comput. Netw., vol. 57, no. 16, pp. 3178–3191, 2013.
    [139]
    D. Man, Y. Mu, J. Guo, W. Yang, J. Lv, and W. Wang, “Cache pollution detection method based on GBDT in information-centric network,” Security Commun. Netw., vol. 2021, pp. 1–10, Jun. 2021.
    [140]
    L. Basyoni, N. Fetais, A. Erbad, A. Mohamed, and M. Guizani, “Traffic analysis attacks on ToR: A survey,” in Proc. IEEE Int. Conf. Inf. IoT Enabling Technol. (ICIoT), Doha, Qatar, Feb. 2020, pp. 183–188.
    [141]
    M. W. A. Azad, R. Tourani, A. Mtibaa, and S. Mastorakis, “Harpocrates: Anonymous data publication in named data networking,” in Proc. 27th ACM Symp. Access Control Models Technol. (SACMAT), New York, NY, USA, Jun. 2022, pp. 79–90.
    [142]
    K. Kita, Y. Koizumi, and T. Hasegawa, “Private retrieval of location-related content using k-anonymity and application to ICN,” Comput. Netw., vol. 209, May 2022, Art. no.
    [143]
    S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun, “ANDaNA: Anonymous named data networking application,” in Proc. 19th Annu. Netw. Distrib. Syst. Security Symp. (NDSS), San Diego, CA, USA, Feb. 2012, pp. 1–8.
    [144]
    G. Tsudik, E. Uzun, and C. A. Wood, “AC3N: Anonymous communication in content-centric networking,” in Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2016, pp. 988–991.
    [145]
    J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues, and open problems,” in Proc. Int. Workshop Design Issues Anonymity Unobservability Designing Privacy Enhancing Technol., Jul. 2009, pp. 10–29.
    [146]
    C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient defense against statistical traffic analysis,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS), vol. 9, Feb. 2009, pp. 1–14.
    [147]
    K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures fail,” in Proc. IEEE Symp. Security Privacy, May 2012, pp. 332–346.
    [148]
    X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance: Website fingerprinting attacks and defenses,” in Proc. ACM Conf. Comput. Commun. Security (CCS), Raleigh, NC, USA, Oct. 2012, pp. 605–616.
    [149]
    A. Panchenkoet al., “Website fingerprinting at Internet scale,” in Proc. 23rd Annu. Netw. Distrib. Syst. Security Symp. (NDSS), Feb. 2016, pp. 1–15.
    [150]
    S. Alduayji, A. Belghith, A. Gazdar, and S. Al-Ahmadi, “PF-EdgeCache: Popularity and freshness aware edge caching scheme for NDN/IoT networks,” Pervasive Mobile Comput., vol. 91, Apr. 2023, Art. no.

    Cited By

    View all
    • (2024)Anonymous Federated Learning via Named-Data NetworkingFuture Generation Computer Systems10.1016/j.future.2023.11.009152:C(288-303)Online publication date: 4-Mar-2024

    Index Terms

    1. Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey
                Index terms have been assigned to the content through auto-classification.

                Recommendations

                Comments

                Information & Contributors

                Information

                Published In

                cover image IEEE Communications Surveys & Tutorials
                IEEE Communications Surveys & Tutorials  Volume 25, Issue 4
                Fourthquarter 2023
                1016 pages

                Publisher

                IEEE Press

                Publication History

                Published: 13 July 2023

                Qualifiers

                • Research-article

                Contributors

                Other Metrics

                Bibliometrics & Citations

                Bibliometrics

                Article Metrics

                • Downloads (Last 12 months)0
                • Downloads (Last 6 weeks)0
                Reflects downloads up to 10 Aug 2024

                Other Metrics

                Citations

                Cited By

                View all
                • (2024)Anonymous Federated Learning via Named-Data NetworkingFuture Generation Computer Systems10.1016/j.future.2023.11.009152:C(288-303)Online publication date: 4-Mar-2024

                View Options

                View options

                Get Access

                Login options

                Media

                Figures

                Other

                Tables

                Share

                Share

                Share this Publication link

                Share on social media