Software Defined Networking for Communication and Control of Cyber-Physical Systems
Pages 803 - 808
Abstract
Cyber-physical Systems (CPS) combine human-machine interaction, the physical world around us, and software aspects by integrating physical systems with communication networks. Opportunities and research challenges are largely interconnected with the three core sub-domains of CPS — computation, communication and control. The current state of the art of the legacy communication technology is one of the major hindrances limiting the evolution of CPS. Most specifically, innovation in communication is restricted with existing routing and switching technologies leaving no practical methods for researchers to test their new ideas. Software Defined Networking (SDN), through the realization of OpenFlow, separates network control logic from the underlying physical routers and switches. This phenomenon allows researchers to write high-level control programs specifying the behavior of the core networks used to implement CPS and thus, enable innovation in next generation communication architectures for CPS. In this paper, we propose a SDN architecture for industrial automation. Network design requirements are extracted from formal component specifications which support the generation of automatic network configurations. The proposed SDN architecture aims to leverage Industry 4.0 and Smart Factories, to bring together industrial automation installations with networking and Internet technologies.
Information & Contributors
Information
Published In
December 2015
857 pages
ISBN:9780769557854
Publisher
IEEE Computer Society
United States
Publication History
Published: 14 December 2015
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025