Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Empowering the 6G Cellular Architecture With Open RAN

Published: 01 February 2024 Publication History

Abstract

Innovation and standardization in 5G have brought advancements to every facet of the cellular architecture. This ranges from the introduction of new frequency bands and signaling technologies for the radio access network (RAN), to a core network underpinned by micro-services and network function virtualization (NFV). However, like any emerging technology, the pace of real-world deployments does not instantly match the pace of innovation. To address this discrepancy, one of the key aspects under continuous development is the RAN with the aim of making it more open, adaptive, functional, and easy to manage. In this paper, we highlight the transformative potential of embracing novel cellular architectures by transitioning from conventional systems to the progressive principles of Open RAN. This promises to make 6G networks more agile, cost-effective, energy-efficient, and resilient. It opens up a plethora of novel use cases, ranging from ubiquitous support for autonomous devices to cost-effective expansions in regions previously underserved. The principles of Open RAN encompass: (i) a disaggregated architecture with modular and standardized interfaces; (ii) cloudification, programmability and orchestration; and (iii) AI-enabled data-centric closed-loop control and automation. We first discuss the transformative role Open RAN principles have played in the 5G era. Then, we adopt a system-level approach and describe how these Open RAN principles will support 6G RAN and architecture innovation. We qualitatively discuss potential performance gains that Open RAN principles yield for specific 6G use cases. For each principle, we outline the steps that research, development and standardization communities ought to take to make Open RAN principles central to next-generation cellular network designs.

References

[1]
S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “NR: The new 5G radio access technology,” IEEE Commun. Standards Mag., vol. 1, no. 4, pp. 24–30, Dec. 2017.
[2]
Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.
[3]
S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,” Proc. IEEE, vol. 102, no. 3, pp. 366–385, Mar. 2014.
[4]
T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
[5]
S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei, “5G new radio: Waveform, frame structure, multiple access, and initial access,” IEEE Commun. Mag., vol. 55, no. 6, pp. 64–71, Jun. 2017.
[6]
IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, document Recommendation ITU-R M.2083, Sep. 2015.
[7]
List of 5G NR Networks. Accessed: Oct. 1, 2023. [Online]. Available: https://en.wikipedia.org/wiki/List_of_5G_NR_networks
[8]
A. Narayananet al., “A comparative measurement study of commercial 5G mmWave deployments,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022, pp. 800–809.
[9]
L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence and learning in O-RAN for data-driven NextG cellular networks,” IEEE Commun. Mag., vol. 59, no. 10, pp. 21–27, Oct. 2021.
[10]
S. Mollahasani, M. Erol-Kantarci, M. Hirab, H. Dehghan, and R. Wilson, “Actor-critic learning based QoS-aware scheduler for reconfigurable wireless networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 45–54, Jan. 2022.
[11]
P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,” IEEE Netw., vol. 33, no. 4, pp. 70–75, Jul. 2019.
[12]
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020.
[13]
W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May 2020.
[14]
S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nature Electron., vol. 3, no. 1, pp. 20–29, Jan. 2020.
[15]
K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.
[16]
H. Tataria, M. Shafi, M. Dohler, and S. Sun, “Six critical challenges for 6G wireless systems: A summary and some solutions,” IEEE Veh. Technol. Mag., vol. 17, no. 1, pp. 16–26, Mar. 2022.
[17]
N. McKeownet al., “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.
[18]
P. Bosshartet al., “P4: Programming protocol-independent packet processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.
[19]
M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 1376–1411, 2nd Quart., 2023.
[20]
L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open, programmable, and virtualized 5G networks: State-of-the-art and the road ahead,” Comput. Netw., vol. 182, Dec. 2020, Art. no.
[21]
H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML workflows on O-RAN RIC platform,” in Proc. IEEE Globecom Workshops (GC Wkshps, Dec. 2020, pp. 1–6.
[22]
A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward next generation open radio access network-what O-RAN can and cannot do!” 2021, arXiv:2111.13754.
[23]
A. Garcia-Saavedra and X. Costa-Pérez, “O-RAN: Disrupting the virtualized RAN ecosystem,” IEEE Commun. Standards Mag., vol. 5, no. 4, pp. 96–103, Dec. 2021.
[24]
B. Brik, K. Boutiba, and A. Ksentini, “Deep learning for B5G open radio access network: Evolution, survey, case studies, and challenges,” IEEE Open J. Commun. Soc., vol. 3, pp. 228–250, 2022.
[25]
A. Arnaz, J. Lipman, M. Abolhasan, and M. Hiltunen, “Toward integrating intelligence and programmability in open radio access networks: A comprehensive survey,” IEEE Access, vol. 10, pp. 67747–67770, 2022.
[26]
D. Wypiór, M. Klinkowski, and I. Michalski, “Open RAN—Radio access network evolution, benefits and market trends,” Appl. Sci., vol. 12, no. 1, p. 408, Jan. 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/1/408
[27]
NR; NR and NG-RAN Overall description; Stage-2, document TS 38.300, Version 17.1.0, 3GPP, Jul. 2022. [Online]. Available: https://www.3gpp.org/DynaReport/38300.htm
[28]
Network Architecture, document TS 23.002, Version 15.0.0, Mar. 2018. [Online]. Available: https://www.3gpp.org/DynaReport/23002.htm
[29]
M. Condoluci and T. Mahmoodi, “Softwarization and virtualization in 5G mobile networks: Benefits, trends and challenges,” Comput. Netw., vol. 146, pp. 65–84, Dec. 2018.
[30]
X. Foukas, F. Sardis, F. Foster, M. K. Marina, M. A. Lema, and M. Dohler, “Experience building a prototype 5G testbed,” in Proc. Workshop Experimentation Meas. 5G. Heraklion, Greece: Association for Computing Machinery, Dec. 2018, pp. 13–18.
[31]
M. Shafiet al., “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, Jun. 2017.
[32]
M. H. Pinson, “5G challenge preliminary event: Evaluating modular, interoperable, multi-vendor, open RAN solutions,” Inst. Telecommun. Sci., Boulder, CO, USA, NTIA Memorandum 23-568, 2023. [Online]. Available: https://its.ntia.gov/publications/details.aspx?pub=3319
[33]
NTIA. (2022). Public Wireless Supply Chain Innovation Fund Homepage. [Online]. Available: https://ntia.gov/page/innovation-fund
[34]
S. Kopsell, A. Ruzhanskiy, A. Hecker, D. Stachorra, and N. Franchi. (2021). Open RAN Risk Analysis. [Online]. Available: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/5G/5GRAN-Risk-Analysis.pdf?__blob=publicationFile&v=7
[35]
GSMA. (Nov. 2020). 5G Energy Efficiencies: Green is the New Black. [Online]. Available: https://data.gsmaintelligence.com/api-web/v2/research-file-download?id=54165956&file=241120-5G-energy.pdf
[36]
C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday, “The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations,” Patterns, vol. 3, no. 8, Aug. 2022, Art. no. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666389921001884
[37]
J. Hu, Q. Wang, and K. Yang, “Energy self-sustainability in full-spectrum 6G,” IEEE Wireless Commun., vol. 28, no. 1, pp. 104–111, Feb. 2021.
[38]
V. Zhang, M. Erol-Kantarci, W. Sun, Y. Dai, J. Hoydis, and M. C. Gursoy, “Guest editorial: AI and 6G convergence: An energy efficiency perspective,” IEEE Netw., vol. 35, no. 6, pp. 10–11, Nov. 2021.
[39]
M. Elsayed and M. Erol-Kantarci, “AI-enabled future wireless networks: Challenges, opportunities, and open issues,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 70–77, Sep. 2019.
[40]
J. Kirby. (2023). 5G Standalone Networks: How Vendors Can Accelerate Adoption. [Online]. Available: https://www.analysysmason.com/contentassets/93081239f81a4ab3888b5c0d1dfaf274/analysys_mason_5g_sa_vendors_sep2023_rma18.pdf
[41]
M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and opportunities,” IEEE Netw., vol. 35, no. 2, pp. 244–251, Mar. 2021.
[42]
Y. Hokazono, H. Kohara, Y. Kishiyama, and T. Asai, “Extreme coverage extension in 6G: Cooperative non-terrestrial network architecture integrating terrestrial networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2022, pp. 138–143.
[43]
M. M. Azariet al., “Evolution of non-terrestrial networks from 5G to 6G: A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 4, pp. 2633–2672, 4th Quart., 2022.
[44]
J. Davies. (2020). Network Outages Costing Enterprise Customers Millions. [Online]. Available: https://telecoms.com/504548/network-outages-costing-enterprise-customers-millions/
[45]
M. Polese, J. M. Jornet, T. Melodia, and M. Zorzi, “Toward end-to-end, full-stack 6G terahertz networks,” IEEE Commun. Mag., vol. 58, no. 11, pp. 48–54, Nov. 2020.
[46]
I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band communication: An old problem revisited and research directions for the next decade,” IEEE Trans. Commun., vol. 70, no. 6, pp. 4250–4285, Jun. 2022.
[47]
T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cognit. Commun. Netw., vol. 3, no. 4, pp. 563–575, Dec. 2017.
[48]
T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention,” in Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT), Limassol, Cyprus, Dec. 2016, pp. 223–228.
[49]
F. Dressler, “Physical layer resilience through deep learning in software radios: Technical perspective,” Commun. ACM, vol. 65, no. 9, p. 82, Sep. 2022.
[50]
F. Dressleret al., “V-edge: Virtual edge computing as an enabler for novel microservices and cooperative computing,” IEEE Netw., vol. 36, no. 3, pp. 24–31, May 2022.
[51]
S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN: Network automation through orchestrated intelligence in the open RAN,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022, pp. 270–279.
[52]
Next G Alliance. (2023). Next G Alliance Report: 6G Spectrum Considerations. [Online]. Available: https://www.nextgalliance.org/wp-content/uploads/dlmuploads/2023/08/6G-Spectrum-Considerations-rev1.pdf
[53]
S. Lagenet al., “New radio beam-based access to unlicensed spectrum: Design challenges and solutions,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 8–37, 1st Quart., 2020.
[54]
R. H. Tehrani, S. Vahid, D. Triantafyllopoulou, H. Lee, and K. Moessner, “Licensed spectrum sharing schemes for mobile operators: A survey and outlook,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2591–2623, 4th Quart., 2016.
[55]
J. Lähteenmäki, “The evolution paths of neutral host businesses: Antecedents, strategies, and business models,” Telecommun. Policy, vol. 45, no. 10, Nov. 2021, Art. no.
[56]
L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “NeutRAN: An open RAN neutral host architecture for zero-touch RAN and spectrum sharing,” IEEE Trans. Mobile Comput., pp. 1–14, 2023.
[57]
N. Gudeet al., “NOX: Towards an operating system for networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008.
[58]
NextEPC. Accessed: Jul. 2020. [Online]. Available: https://nextepc.org
[59]
Open5GS. Accessed: Jul. 2020. [Online]. Available: https://open5gs.org
[60]
Free5GC. Accessed: Jul. 2020. [Online]. Available: https://free5gc.org
[61]
A. Checkoet al., “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426, 1st Quart., 2015.
[62]
xRAN Forum. (2018). xRAN Forum Merges With C-RAN Alliance to Form ORAN Alliance. [Online]. Available: https://www.businesswire.com/news/home/20180227005673/en/
[63]
L. Kundu, X. Lin, E. Agostini, and V. Ditya, “Hardware acceleration for open radio access networks: A contemporary overview,” 2023, arXiv:2305.09588.
[64]
C. M. Karle, M. Kreutzer, J. Pfau, and J. Becker, “A hardware/software co-design approach to prototype 6G mobile applications inside the GNU radio SDR ecosystem using FPGA hardware accelerators,” in Proc. 12th Int. Symp. Highly-Efficient Accel. Reconfigurable Technol. Tsukuba, Japan: Association for Computing Machinery, 2022, pp. 33–41.
[65]
J. Salter. (2021). New RISC-V Hardware Designs From 5G Startup EdgeQ. [Online]. Available: https://arstechnica.com/gadgets/2021/01/new-risc-v-hardware-designs-from-5g-startup-edgeq/
[66]
O-RAN Acceleration Abstraction Layer FEC Profiles 1.0, document O-RAN.WG6.AAL-FEC.0-v01.00, O-RAN Working Group 6, Jul. 2021.
[67]
O-RAN Acceleration Abstraction Layer General Aspects an Principles 1.01, document O-RAN.WG6.AAL-GAnP-v01.01, O-RAN Working Group 6, Jul. 2021.
[68]
NG-RAN; F1 General Aspects and Principles, document TS 38.470, Version 17.0.0, 3GPP, Apr. 2022. [Online]. Available: https://www.3gpp.org/DynaReport/38470.htm
[69]
O-RAN Fronthaul Control, User and Synchronization Plane Specification 7.0, document ORAN-WG4.CUS.0-v07.00, O-RAN Working Group 4, Jul. 2021.
[70]
O-RAN Management Plane Specification 7.0, document O-RAN.WG4.MP.0-v07.00, O-RAN Working Group 4, Jul. 2021.
[71]
O-RAN Near-Real-Time RAN Intelligent Controller Architecture & E2 General Aspects and Principles 2.00, document O-RAN.WG3.E2GAP-v02.01, O-RAN Working Group 3, Jul. 2021.
[72]
O-RAN Architecture Description 5.00, document O-RAN.WG1.O-RAN-Architecture-Description-v05.00, O-RAN Working Group 1, Jul. 2021.
[73]
R. Jain and S. Paul, “Network virtualization and software defined networking for cloud computing: A survey,” IEEE Commun. Mag., vol. 51, no. 11, pp. 24–31, Nov. 2013.
[74]
O-RAN Cloud Architecture and Deployment Scenarios for O-RAN Virtualized RAN 2.02, document O-RAN.WG6.CAD-v02.02, O-RAN Working Group 6, Jul. 2021.
[75]
O-RAN Security Requirements Specifications 4.0, document O-RAN.WG11.Security-Requirements-Specifications-v04.00, O-RAN Working Group 11, Oct. 2022.
[76]
O-RAN Security Protocols Specifications 4.0, document O-RAN.WG11.Security-Protocols-Specifications-v04.00, O-RAN Working Group 11, Jul. 2022.
[77]
O-RAN Security Threat Modeling and Remediation Analysis 4.0, document O-RAN.WG11.O-RAN-Threat-Model-v04.00, O-RAN Working Group 11, Jul. 2022.
[78]
European Commission. (May 2022). Cybersecurity of Open Radio Access Networks. [Online]. Available: https://digital-strategy.ec.europa.eu/en/library/cybersecurity-open-radio-access-networks
[80]
S. P. Jason and S. Boswell. (Aug. 2021). Security Considerations of Open RAN. Ericsson. [Online]. Available: https://www.ericsson.com/4a67b7/assets/local/reports-papers/further-insights/doc/02092021-12911-security-considerations-for-cloud-ran.pdf
[81]
D. Mimranet al., “Evaluating the security of open radio access networks,” 2022, arXiv:2201.06080.
[82]
J. Groenet al., “Implementing and evaluating security in O-RAN: Interfaces, intelligence, and platforms,” 2023, arXiv:2304.11125.
[83]
D. Sabellaet al., “Energy efficiency benefits of RAN-as-a-service concept for a cloud-based 5G mobile network infrastructure,” IEEE Access, vol. 2, pp. 1586–1597, 2014.
[84]
G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, P. Serrano, and A. Banchs, “Nuberu: Reliable RAN virtualization in shared platforms,” in Proc. 27th Annu. Int. Conf. Mobile Comput. Netw., New Orleans, LA, USA, Oct. 2021.
[85]
T. Pamuklu, M. Erol-Kantarci, and C. Ersoy, “Reinforcement learning based dynamic function splitting in disaggregated green open RANs,” in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, Jun. 2021, pp. 1–6.
[86]
J. Luo, Q. Chen, and L. Tang, “Reducing power consumption by joint sleeping strategy and power control in delay-aware C-RAN,” IEEE Access, vol. 6, pp. 14655–14667, 2018.
[87]
D. Lopez-Perezet al., “A survey on 5G radio access network energy efficiency: Massive MIMO, lean carrier design, sleep modes, and machine learning,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 653–697, 1st Quart., 2022.
[88]
M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly detection: Methods, systems and tools,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 303–336, 1st Quart., 2014.
[89]
T. Sundqvist, M. Bhuyan, and E. Elmroth, “Robust procedural learning for anomaly detection and observability in 5G RAN,” IEEE Trans. Netw. Service Manag., early access, Oct. 2, 2023. 10.1109/TNSM.2023.3321401.
[90]
M. Kim, J. Tack, and S. J. Hwang, “Adversarial self-supervised contrastive learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 2983–2994.
[91]
J. M. Altschuler, V.-E. Brunel, and A. Malek, “Best arm identification for contaminated bandits,” J. Mach. Learn. Res., vol. 20, no. 91, pp. 1–39, 2019.
[92]
S. D’Oro, M. Polese, L. Bonati, H. Cheng, and T. Melodia, “DApps: Distributed applications for real-time inference and control in O-RAN,” IEEE Commun. Mag., vol. 60, no. 11, pp. 52–58, Nov. 2022.
[93]
O-RAN Near-Real-time RAN Intelligent Controller E2 Service Model, RAN Control 1.03, document ORAN-WG3.E2SM-RC-v01.03, O-RAN Working Group 3, Oct. 2022.
[94]
A. Lacavaet al., “Programmable and customized intelligence for traffic steering in 5G networks using open RAN architectures,” IEEE Trans. Mobile Comput., early access, Apr. 13, 2023. 10.1109/TMC.2023.3266642.
[95]
H. Zhang, H. Zhou, and M. Erol-Kantarci, “Federated deep reinforcement learning for resource allocation in O-RAN slicing,” in Proc. IEEE Global Commun. Conf., Dec. 2022, pp. 958–963.
[96]
M. Sharara, T. Pamuklu, S. Hoteit, V. Vèque, and M. Erol-Kantarci, “Policy-gradient-based reinforcement learning for computing resources allocation in O-RAN,” in Proc. IEEE 11th Int. Conf. Cloud Netw. (CloudNet), Nov. 2022, pp. 229–236.
[97]
L. Bonatiet al., “Colosseum: Large-scale wireless experimentation through hardware-in-the-loop network emulation,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), Dec. 2021, pp. 105–113.
[98]
L. Bertizzoloet al., “Arena: A 64-antenna SDR-based ceiling grid testing platform for sub-6 GHz 5G-and-Beyond radio spectrum research,” Comput. Netw., vol. 181, Nov. 2020, Art. no.
[99]
C. Puligheddu, J. Ashdown, C. Fabiana Chiasserini, and F. Restuccia, “SEM-O-RAN: Semantic and flexible O-RAN slicing for NextG edge-assisted mobile systems,” 2022, arXiv:2212.11853.
[100]
M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-RAN: Developing machine learning-based xApps for open RAN closed-loop control on programmable experimental platforms,” IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 5787–5800, Oct. 2023.
[101]
D. Johnson, D. Maas, and J. Van Der Merwe, “Open source RAN slicing on POWDER: A top-to-bottom O-RAN use case,” in Proc. ACM MobiSys, Jun. 2021, pp. 507–508.
[102]
S. F. Abedin, A. Mahmood, N. H. Tran, Z. Han, and M. Gidlund, “Elastic O-RAN slicing for industrial monitoring and control: A distributed matching game and deep reinforcement learning approach,” IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 10808–10822, Oct. 2022.
[103]
M. Hoffmann and P. Kryszkiewicz, “Signaling storm detection in IIoT network based on the open RAN architecture,” 2023, arXiv:2302.08239.
[104]
E. Moro, F. Linsalata, M. Magarini, U. Spagnolini, and A. Capone, “Advancing O-RAN to facilitate intelligence in V2X,” 2023, arXiv:2307.01029.
[105]
I. Godoret al., “A look inside 5G standards to support time synchronization for smart manufacturing,” IEEE Commun. Standards Mag., vol. 4, no. 3, pp. 14–21, Sep. 2020.
[106]
O. T. Demir, M. Masoudi, E. Bjornson, and C. Cavdar, “Cell-free massive MIMO in O-RAN: Energy-aware joint orchestration of cloud, fronthaul, and radio resources,” J. Sel. Areas Commun., Jan. 2023.
[107]
M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi, “Machine learning at the edge: A data-driven architecture with applications to 5G cellular networks,” IEEE Trans. Mobile Comput., vol. 20, no. 12, pp. 3367–3382, Dec. 2021.
[108]
V. Sathya, L. Zhang, and M. Yavuz, “Towards private 5G O-RAN implementation: Performance and business validation,” in Proc. IEEE Future Netw. World Forum (FNWF), Oct. 2022, pp. 676–681.
[109]
C. J. Tselikis, “Automated and secure control of industrial: From WSN to open RAN solutions,” in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC), Jun. 2023, pp. 556–561.
[110]
M. Gramagliaet al., “Network intelligence for virtualized RAN orchestration: The DAEMON approach,” in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit (EuCNC/6G Summit), Jun. 2022, pp. 482–487.
[111]
D. Bega, M. Gramaglia, R. Perez, M. Fiore, A. Banchs, and X. Costa-Pérez, “AI-based autonomous control, management, and orchestration in 5G: From standards to algorithms,” IEEE Netw., vol. 34, no. 6, pp. 14–20, Nov. 2020.
[112]
I. Tamim, A. Saci, M. Jammal, and A. Shami, “Downtime-aware O-RAN VNF deployment strategy for optimized self-healing in the O-cloud,” 2021, arXiv:2110.06060.
[113]
P. Liet al., “RLOps: Development life-cycle of reinforcement learning aided open RAN,” 2021, arXiv:2111.06978.
[114]
A. Huff, M. Hiltunen, and E. P. Duarte, “RFT: Scalable and fault-tolerant microservices for the O-RAN control plane,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), Bordeaux, France, May 2021, pp. 402–409.
[115]
O-RAN Use Cases Detailed Specification 6.0, document O-RAN.WG1.Use-Cases-Detailed-Specification-v06.00, O-RAN Working Group 1, Jul. 2021.
[116]
O-RAN Use Cases Analysis Report 6.0, document O-RAN.WG1.Use-Cases-Analysis-Report-v06.00, O-RAN Working Group 1, Jul. 2021.
[117]
M. Chen, W. Saad, and C. Yin, “Virtual reality over wireless networks: Quality-of-Service model and learning-based resource management,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5621–5635, Nov. 2018.
[118]
Y. Dantaset al., “Beam selection for energy-efficient mmWave network using advantage actor critic learning,” in Proc. IEEE Int. Conf. Commun., May 2023, pp. 1–6.
[119]
M. A. Habibet al., “Hierarchical reinforcement learning based traffic steering in multi-RAT 5G deployments,” in Proc. IEEE Int. Conf. Commun., May 2023, pp. 1–6.
[120]
N. Bhushanet al., “Network densification: The dominant theme for wireless evolution into 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 82–89, Feb. 2014.
[121]
M. Wenet al., “Private 5G networks: Concepts, architectures, and research landscape,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 1, pp. 7–25, Jan. 2022.
[122]
Federal Communications Commission. (2021). WC Docket, no. 18–89. DA 21-355. [Online]. Available: https://tinyurl.com/2maycpp3
[123]
E. J. Oughton and Z. Frias, “The cost, coverage and rollout implications of 5G infrastructure in Britain,” Telecommun. Policy, vol. 42, no. 8, pp. 636–652, Sep. 2018.
[124]
L. Zhang, M. Xiao, G. Wu, M. Alam, Y.-C. Liang, and S. Li, “A survey of advanced techniques for spectrum sharing in 5G networks,” IEEE Wireless Commun., vol. 24, no. 5, pp. 44–51, Oct. 2017.
[125]
C. Gabriel, “The impact of 5G and next-generation networks on mobile OPEX spending,” Anal. Mason, London, U.K., Anal. Mason Rep., 2018. [Online]. Available: https://tinyurl.com/yckndswz
[126]
Alpha Wireless Insights Blog. (2021). Analysis: The Neutral Host Model is Sprouting Wings. [Online]. Available: https://alphawireless.com/analysis-the-neutral-host-model-is-sprouting-wings/
[127]
K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network sharing to multi-tenancy: The 5G network slice broker,” IEEE Commun. Mag., vol. 54, no. 7, pp. 32–39, Jul. 2016.
[128]
STL Partners. (2022). Neutral Host: How Open RAN and Neutral Host Paves the Way for 5G. [Online]. Available: https://stlpartners.com/articles/telco-cloud/neutral-host-how-open-ran-and-neutral-host-paves-way-5g/
[129]
M. Palolaet al., “Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS),” in Proc. IEEE DySPAN, Baltimore, MD, USA, Mar. 2017, pp. 1–9.
[130]
E. Moro, G. Gemmi, M. Polese, L. Maccari, A. Capone, and T. Melodia, “Toward open integrated access and backhaul with O-RAN,” in Proc. 21st Medit. Commun. Comput. Netw. Conf. (MedComNet), Jun. 2023, pp. 61–69.
[131]
L. Sarakiset al., “Cost-efficient 5G non-public network roll-out: The Affordable5G approach,” in Proc. IEEE MeditCom, Athens, Greece, Sep. 2021, pp. 221–227.
[132]
M. Liyanageet al., “A survey on zero touch network and service management (ZSM) for 5G and beyond networks,” J. Netw. Comput. Appl., vol. 203, Jul. 2022, Art. no.
[133]
C. Benzaid and T. Taleb, “AI-driven zero touch network and service management in 5G and beyond: Challenges and research directions,” IEEE Netw., vol. 34, no. 2, pp. 186–194, Mar. 2020.
[134]
GSMA. (Jun. 2021). Spectrum Sharing. GSMA Public Policy Position. [Online]. Available: https://tinyurl.com/5bju2k44
[135]
S. K. Sharma, T. E. Bogale, L. B. Le, S. Chatzinotas, X. Wang, and B. Ottersten, “Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges,” IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 674–707, 1st Quart., 2018.
[136]
X. Foukas, M. K. Marina, and K. Kontovasilis, “Iris: Deep reinforcement learning driven shared spectrum access architecture for indoor neutral-host small cells,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1820–1837, Aug. 2019.
[137]
P. Caballero, A. Banchs, G. De Veciana, and X. Costa-Pérez, “Network slicing games: Enabling customization in multi-tenant mobile networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 662–675, Apr. 2019.
[138]
P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez, “Multi-tenant radio access network slicing: Statistical multiplexing of spatial loads,” IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3044–3058, Oct. 2017.
[139]
Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive radio networking and communications: An overview,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3386–3407, Sep. 2011.
[140]
M. T. Masonta, M. Mzyece, and N. Ntlatlapa, “Spectrum decision in cognitive radio networks: A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1088–1107, 3rd Quart., 2013.
[141]
L. Baldesi, F. Restuccia, and T. Melodia, “ChARM: NextG spectrum sharing through data-driven real-time O-RAN dynamic control,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022, pp. 240–249.
[142]
Next G Alliance Report. (2023). 6G Spectrum Considerations. [Online]. Available: https://www.nextgalliance.org/wp-content/uploads/dlmuploads/2023/08/6G-Spectrum-Considerations-rev1.pdf
[143]
T. Inoue, “5G NR release 16 and millimeter wave integrated access and backhaul,” in Proc. IEEE Radio Wireless Symp. (RWS), Jan. 2020, pp. 56–59.
[144]
M. Poleseet al., “Integrated access and backhaul in 5G mmWave networks: Potential and challenges,” IEEE Commun. Mag., vol. 58, no. 3, pp. 62–68, Mar. 2020.
[145]
Y. Zhang, V. Ramamurthi, Z. Huang, and D. Ghosal, “Co-optimizing performance and fairness using weighted pf scheduling and iab-aware flow control,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), May 2020, pp. 1–6.
[146]
B. Zhang, F. Devoti, I. Filippini, and D. De Donno, “Resource allocation in mmWave 5G IAB networks: A reinforcement learning approach based on column generation,” Comput. Netw., vol. 196, Sep. 2021, Art. no.
[147]
M. Yu, Y. Pi, A. Tang, and X. Wang, “Coordinated parallel resource allocation for integrated access and backhaul networks,” Comput. Netw., vol. 222, Feb. 2023, Art. no.
[148]
S. Ranjan, P. Chaporkar, P. Jha, and A. Karandikar, “Backhaul-aware cell selection policies in 5G IAB networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2021, pp. 1–6.
[149]
M. Vaeziet al., “Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1117–1174, 2nd Quart., 2022.
[150]
R. Campana, C. Amatetti, and A. Vanelli-Coralli, “O-RAN based non-terrestrial networks: Trends and challenges,” in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit (EuCNC/6G Summit), Jun. 2023, pp. 264–269.
[151]
Z. Abdullah, S. Kisseleff, E. Lagunas, V. N. Ha, F. Zeppenfeldt, and S. Chatzinotas, “Integrated access and backhaul via satellites,” in Proc. IEEE 34th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2023, pp. 1–6.
[152]
S. Saafi, O. Vikhrova, G. Fodor, J. Hosek, and S. Andreev, “AI-aided integrated terrestrial and non-terrestrial 6G solutions for sustainable maritime networking,” IEEE Netw., vol. 36, no. 3, pp. 183–190, May 2022.
[153]
G. Gemmi, M. Elkael, M. Polese, L. Maccari, H. Castel-Taleb, and T. Melodia, “Joint routing and energy optimization for integrated access and backhaul with open RAN,” in Proc. IEEE GlobeCom, 2023, pp. 1–6.

Cited By

View all
  • (2024)CoreKube: An Efficient, Autoscaling and Resilient Mobile Core SystemGetMobile: Mobile Computing and Communications10.1145/3665112.366511828:1(17-22)Online publication date: 13-May-2024
  • (2024)Through the Telco Lens: A Countrywide Empirical Study of Cellular HandoversProceedings of the 2024 ACM on Internet Measurement Conference10.1145/3646547.3688452(51-67)Online publication date: 4-Nov-2024
  • (2024)The Evolution of Mobile Network OperationsComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2024.110292243:COnline publication date: 1-Apr-2024

Index Terms

  1. Empowering the 6G Cellular Architecture With Open RAN
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Information & Contributors

              Information

              Published In

              cover image IEEE Journal on Selected Areas in Communications
              IEEE Journal on Selected Areas in Communications  Volume 42, Issue 2
              Feb. 2024
              265 pages

              Publisher

              IEEE Press

              Publication History

              Published: 01 February 2024

              Qualifiers

              • Research-article

              Contributors

              Other Metrics

              Bibliometrics & Citations

              Bibliometrics

              Article Metrics

              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0
              Reflects downloads up to 25 Jan 2025

              Other Metrics

              Citations

              Cited By

              View all
              • (2024)CoreKube: An Efficient, Autoscaling and Resilient Mobile Core SystemGetMobile: Mobile Computing and Communications10.1145/3665112.366511828:1(17-22)Online publication date: 13-May-2024
              • (2024)Through the Telco Lens: A Countrywide Empirical Study of Cellular HandoversProceedings of the 2024 ACM on Internet Measurement Conference10.1145/3646547.3688452(51-67)Online publication date: 4-Nov-2024
              • (2024)The Evolution of Mobile Network OperationsComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2024.110292243:COnline publication date: 1-Apr-2024

              View Options

              View options

              Figures

              Tables

              Media

              Share

              Share

              Share this Publication link

              Share on social media