Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Cell-Free Massive Non-Terrestrial Networks

Published: 01 January 2025 Publication History

Abstract

As a means to provide ubiquitous connectivity across the ground-air-space 3D network, low Earth orbit (LEO) satellite mega-constellation systems comprising thousands of LEO satellites have attracted significant interest from both academia and industry recently. One major issue of LEO mega-constellation systems is the frequent handovers between satellites and beams, causing an increase in communication latency and deterioration of quality of service (QoS). In this paper, we propose a user-centric cooperative communication framework for next generation (xG) LEO satellite mega-constellation systems. In the proposed framework, a group of LEO satellites simultaneously serve all the user equipments (UEs) using the same timefrequency resources. By dynamically organizing the clusters of serving satellites and coordinating their joint transmission based on statistical channel state information (CSI), the handover frequency and inter-satellite interference can be reduced effectively, thereby achieving significant enhancements in the spectral efficiency and coverage probability. From the achievable rate analysis and extensive simulations on realistic xG LEO satellite communication environments, we show that the proposed scheme substantially improves the spectral efficiency and coverage over the conventional beam-centric systems.

References

[1]
S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?,” Nature Electron., vol. 3, no. 1, pp. 20–29, Jan. 2020.
[2]
A. Conti et al., “Location awareness in beyond 5G networks,” IEEE Commun. Mag., vol. 59, no. 11, pp. 22–27, Nov. 2021.
[3]
Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019.
[4]
F. Morselli, S. M. Razavi, M. Z. Win, and A. Conti, “Soft information based localization for 5G networks and beyond,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 9923–9938, Dec. 2023.
[5]
Technical Specification Group Radio Access Network; Solutions for NR to Support Non-Terrestrial Networks (NTN) (Release 16), Standard 3GPP TR 38.821 V16.2.0, Release 16, 3rd Generation Partnership Project, Mar. 2023.
[6]
Technical Specification Group Radio Access Network; NR; User Equipment (UE) Feature List (Release 17), Standard 3GPP TR 38.822 V17.1.0, Release 17, 3rd Generation Partnership Project, Jun. 2023.
[7]
Technical Specification Group Radio Access Network; Non-Terrestrial Networks (NTN) L-/S-Band for NR (Release 18), Standard 3GPP TR 38.741 V18.1.0, Release 18, 3rd Generation Partnership Project, Mar. 2024.
[8]
A. Alsharoa and M.-S. Alouini, “Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5088–5100, Aug. 2020.
[9]
M. M. Azari et al., “Evolution of non-terrestrial networks from 5G to 6G: A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 4, pp. 2633–2672, 4th Quart., 2022.
[10]
F. Rinaldi et al., “Non-terrestrial networks in 5G & beyond: A survey,” IEEE Access, vol. 8, pp. 165178–165200, 2020.
[11]
G. Kwon, W. Shin, A. Conti, W. C. Lindsey, and M. Z. Win, “Access-backhaul strategy via gNB cooperation for integrated terrestrial-satellite networks,” IEEE J. Sel. Areas Commun., vol. 42, no. 5, pp. 1403–1419, May 2024.
[12]
X. Lin, S. Cioni, G. Charbit, N. Chuberre, S. Hellsten, and J. Boutillon, “On the path to 6G: Embracing the next wave of low earth orbit satellite access,” IEEE Commun. Mag., vol. 59, no. 12, pp. 36–42, Dec. 2021.
[13]
R. Deng, B. Di, H. Zhang, L. Kuang, and L. Song, “Ultra-dense LEO satellite constellations: How many LEO satellites do we need?,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4843–4857, Aug. 2021.
[14]
Z. Qu, G. Zhang, H. Cao, and J. Xie, “LEO satellite constellation for Internet of Things,” IEEE Access, vol. 5, pp. 18391–18401, 2017.
[15]
B. Al Homssi et al., “Next generation mega satellite networks for access equality: Opportunities, challenges, and performance,” IEEE Commun. Mag., vol. 60, no. 4, pp. 18–24, Apr. 2022.
[16]
P. Chowdhury, M. Atiquzzaman, and W. Ivancic, “Handover schemes in satellite networks: State-of-the-art and future research directions,” IEEE Commun. Surveys Tuts., vol. 8, no. 4, pp. 2–14, 4th Quart., 2006.
[17]
Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commun., vol. 26, no. 2, pp. 55–61, Apr. 2019.
[18]
J. Tang, D. Bian, G. Li, J. Hu, and J. Cheng, “Optimization method of dynamic beam position for LEO beam-hopping satellite communication systems,” IEEE Access, vol. 9, pp. 57578–57588, 2021.
[19]
A. Ivanov, R. Bychkov, and E. Tcatcorin, “Spatial resource management in LEO satellite,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15623–15632, Dec. 2020.
[20]
E. Kim, I. P. Roberts, and J. G. Andrews, “Downlink analysis and evaluation of multi-beam LEO satellite communication in shadowed Rician channels,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp. 2061–2075, Feb. 2024.
[21]
L. Lei et al., “Spatial–temporal resource optimization for uneven-traffic LEO satellite systems: Beam pattern selection and user scheduling,” IEEE J. Sel. Areas Commun., vol. 42, no. 5, pp. 1279–1291, May 2024.
[22]
Z. Lin, Z. Ni, L. Kuang, C. Jiang, and Z. Huang, “Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 3917–3930, Apr. 2022.
[23]
K.-X. Li et al., “Downlink transmit design for massive MIMO LEO satellite communications,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1014–1028, Feb. 2022.
[24]
L. You et al., “Hybrid analog/digital precoding for downlink massive MIMO LEO satellite communications,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 5962–5976, Aug. 2022.
[25]
Y. Liu, C. Li, J. Li, and L. Feng, “Robust energy-efficient hybrid beamforming design for massive MIMO LEO satellite communication systems,” IEEE Access, vol. 10, pp. 63085–63099, 2022.
[26]
M. Lin, Z. Lin, W.-P. Zhu, and J.-B. Wang, “Joint beamforming for secure communication in cognitive satellite terrestrial networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 5, pp. 1017–1029, May 2018.
[27]
Q. Wang, H. Zhang, J.-B. Wang, F. Yang, and G. Y. Li, “Joint beamforming for integrated mmWave satellite-terrestrial self-backhauled networks,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9103–9117, Sep. 2021.
[28]
D. Peng, A. Bandi, Y. Li, S. Chatzinotas, and B. Ottersten, “Hybrid beamforming, user scheduling, and resource allocation for integrated terrestrial-satellite communication,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8868–8882, Sep. 2021.
[29]
M. Y. Abdelsadek, G. K. Kurt, and H. Yanikomeroglu, “Distributed massive MIMO for LEO satellite networks,” IEEE Open J. Commun. Soc., vol. 3, pp. 2162–2177, 2022.
[30]
X. Zhang, S. Sun, M. Tao, Q. Huang, and X. Tang, “Multi-satellite cooperative networks: Joint hybrid beamforming and user scheduling design,” IEEE Trans. Wireless Commun., vol. 23, no. 7, pp. 7938–7952, Jul. 2024.
[31]
D. Kim, J. Park, and N. Lee, “Coverage analysis of dynamic coordinated beamforming for LEO satellite downlink networks,” IEEE Trans. Wireless Commun., vol. 23, no. 9, pp. 12239–12255, Sep. 2024.
[32]
F. Wang, D. Jiang, Z. Wang, J. Chen, and T. Q. S. Quek, “Seamless handover in LEO based non-terrestrial networks: Service continuity and optimization,” IEEE Trans. Commun., vol. 71, no. 2, pp. 1008–1023, Feb. 2023.
[33]
H. Zhou, J. Li, K. Yang, H. Zhou, J. An, and Z. Han, “Handover analysis in ultra-dense LEO satellite networks with beamforming methods,” IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3676–3690, Mar. 2023.
[34]
M. Jia, X. Zhang, X. Gu, Q. Guo, Y. Li, and P. Lin, “Interbeam interference constrained resource allocation for shared spectrum multibeam satellite communication systems,” IEEE Internet Things J., vol. 6, no. 4, pp. 6052–6059, Aug. 2019.
[35]
M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of network localization and navigation,” Proc. IEEE, vol. 106, no. 7, pp. 1136–1165, Jul. 2018.
[36]
R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and H. Wymeersch, “Location-aware communications for 5G networks: How location information can improve scalability, latency, and robustness of 5G,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 102–112, Nov. 2014.
[37]
Z. Wang, Z. Liu, Y. Shen, A. Conti, and M. Z. Win, “Location awareness in beyond 5G networks via reconfigurable intelligent surfaces,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2011–2025, Jul. 2022.
[38]
W. Stock, R. T. Schwarz, C. A. Hofmann, and A. Knopp, “Survey on opportunistic PNT with signals from LEO communication satellites,” IEEE Commun. Surveys Tuts., early access, May 30, 2024. 10.1109/COMST.2024.3406990.
[39]
M. Z. Win, Z. Wang, Z. Liu, Y. Shen, and A. Conti, “Location awareness via intelligent surfaces: A path toward holographic NLN,” IEEE Veh. Technol. Mag., vol. 17, no. 2, pp. 37–45, Jun. 2022.
[40]
R. M. Ferre et al., “Is LEO-based positioning with mega-constellations the answer for future equal access localization?,” IEEE Commun. Mag., vol. 60, no. 6, pp. 40–46, Jun. 2022.
[41]
A. Conti, G. Torsoli, C. A. Gómez-Vega, A. Vaccari, G. Mazzini, and M. Z. Win, “3GPP-compliant datasets for xG location-aware networks,” IEEE Open J. Veh. Technol., vol. 5, pp. 473–484, 2024.
[42]
A. Conti, G. Torsoli, C. A. G{ó}mez-Vega, A. Vaccari, and M. Z. Win, “xG-Loc: 3GPP-compliant datasets for xG location-aware networks,” IEEE Dataport, Dec. 2023. 10.21227/rper-vc03.
[43]
H. Xv, Y. Sun, Y. Zhao, M. Peng, and S. Zhang, “Joint beam scheduling and beamforming design for cooperative positioning in multi-beam LEO satellite networks,” IEEE Trans. Veh. Technol., vol. 73, no. 4, pp. 5276–5287, Apr. 2024.
[44]
A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win, “Soft information for localization-of-things,” Proc. IEEE, vol. 107, no. 11, pp. 2240–2264, Sep. 2019.
[45]
L. You, K.-X. Li, J. Wang, X. Gao, X.-G. Xia, and B. Ottersten, “Massive MIMO transmission for LEO satellite communications,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1851–1865, Aug. 2020.
[46]
V. Va, J. Choi, and R. W. Heath, “The impact of beamwidth on temporal channel variation in vehicular channels and its implications,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 5014–5029, Jun. 2016.
[47]
H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
[48]
E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and power optimization in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445–4459, Jul. 2017.
[49]
J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99878–99888, 2019.
[50]
S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-free massive MIMO: A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 492–523, 1st Quart., 2022.
[51]
M. Z. Win et al., “Network localization and navigation via cooperation,” IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.
[52]
T. Janssen, A. Koppert, R. Berkvens, and M. Weyn, “A survey on IoT positioning leveraging LPWAN, GNSS and LEO-PNT,” IEEE Internet Things J., vol. 10, no. 13, pp. 11135–11159, Feb. 2023.
[53]
M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. V. Poor, “Network operation strategies for efficient localization and navigation,” Proc. IEEE, vol. 106, no. 7, pp. 1224–1254, Jul. 2018.
[54]
H. K. Dureppagari, C. Saha, H. S. Dhillon, and R. M. Buehrer, “NTN-based 6G localization: Vision, role of LEOs, and open problems,” IEEE Wireless Commun., vol. 30, no. 6, pp. 44–51, Dec. 2023.
[55]
S. Kim, J. Moon, J. Wu, B. Shim, and M. Z. Win, “Vision-aided positioning and beam focusing for 6G terahertz communications,” IEEE J. Sel. Areas Commun., vol. 42, no. 9, pp. 2503–2519, Sep. 2024.
[56]
Q. Zhang, S. Jin, M. McKay, D. Morales-Jimenez, and H. Zhu, “Power allocation schemes for multicell massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 5941–5955, Nov. 2015.
[57]
J. W. Choi, B. Shim, Y. Ding, B. Rao, and D. I. Kim, “Compressed sensing for wireless communications: Useful tips and tricks,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1527–1550, 3rd Quart., 2017.
[58]
S. Kim and B. Shim, “Energy-efficient millimeter-wave cell-free systems under limited feedback,” IEEE Trans. Commun., vol. 69, no. 6, pp. 4067–4082, Jun. 2021.
[59]
E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted η₁ minimization,” J. Fourier Anal. Appl., vol. 14, nos. 5–6, pp. 877–905, Oct. 2008.
[60]
A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric convex approximation method with applications to nonconvex truss topology design problems,” J. Global Optim., vol. 47, no. 1, pp. 29–51, May 2010.
[61]
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[62]
Y. Ye, Interior Point Algorithms: Theory and Analysis. Hoboken, NJ, USA: Wiley, 2011.
[63]
J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.
[64]
Technical Specification Group Radio Access Network; Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15), Standard 3GPPTR, Release 15, 3rd Generation Partnership Project, Sep. 2020.
[65]
J. Palacios, N. González-Prelcic, C. Mosquera, T. Shimizu, and C.-H. Wang, “A hybrid beamforming design for massive MIMO LEO satellite communications,” Frontiers Space Technol., vol. 2, pp. 1–14, Sep. 2021.
[66]
W. Jiang, Y. Zhan, X. Xiao, and G. Sha, “Network simulators for satellite-terrestrial integrated networks: A survey,” IEEE Access, vol. 11, pp. 98269–98292, 2023.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Journal on Selected Areas in Communications
IEEE Journal on Selected Areas in Communications  Volume 43, Issue 1
Jan. 2025
410 pages

Publisher

IEEE Press

Publication History

Published: 01 January 2025

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media