Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Turning carbon dioxide into vodka: A Brooklyn startup is an XPrize finalist for its boozy carbon-capture technology - [Podcasts]

Published: 01 December 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Steven Cherry: People have been talking about CSS&#x2014;which alternatively stands for carbon capture and storage, or carbon capture and sequestration&#x2014;for well over a decade. To boost progress, the Carbon XPrize was founded to, as a Spectrum article at the time said, turn &#x201C;CO<sub>2</sub> molecules into products with higher added value.&#x201D;

    References

    [1]
    D. Riboni, C. Bettini, G. Civitarese, Z. H. Janjua, and V. Bulgari, “From lab to life: Fine-grained behavior monitoring in the elderly's home,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops, 2015, pp. 342–347.
    [2]
    A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition using body-worn inertial sensors,” ACM Comput. Surveys, vol. 46, no. 3, pp. 33:1–33:33, 2014.
    [3]
    T. Gu, L. Wang, Z. Wu, X. Tao, and J. Lu, “A pattern mining approach to sensor-based human activity recognition,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 9, pp. 1359–1372, Sep. 2011.
    [4]
    D. J. Cook, K. D. Feuz, and N. C. Krishnan, “Transfer learning for activity recognition: A survey,” Knowl. Inf. Syst., vol. 36, no. 3, pp. 537–556, 2013.
    [5]
    K. D. Feuz and D. J. Cook, “Real-time annotation tool (RAT),” in Proc. AAAI Workshops, 2013.
    [6]
    D. Roggen, A. Calatroni, et al., “Collecting complex activity datasets in highly rich networked sensor environments,” in Proc. Int. Conf. Netw. Sensing Syst., 2010, pp. 233–240.
    [7]
    L. Chen, C. D. Nugent, and H. Wang, “A knowledge-driven approach to activity recognition in smart homes,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6, pp. 961–974, Jun. 2012.
    [8]
    N. D. Rodríguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores, “A survey on ontologies for human behavior recognition,” ACM Comput. Surveys, vol. 46, no. 4, 2014, Art. no.
    [9]
    G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilakos, “A survey on ambient intelligence in healthcare,” Proc. IEEE, vol. 101, no. 12, pp. 2470–2494, Dec. 2013.
    [10]
    J. Ye, S. Dobson, and S. McKeever, “Situation identification techniques in pervasive computing: A review,” Pervasive Mobile Comput., vol. 8, no. 1, pp. 36–66, 2012.
    [11]
    B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, and U. Sattler, “OWL 2: The next step for OWL,” J. Web Semantics, vol. 6, no. 4, pp. 309–322, 2008.
    [12]
    M. Richardson and P. Domingos, “Markov logic networks,” Mach. Learn., vol. 62, no. 1, pp. 107–136, 2006.
    [13]
    D. Riboni, T. Sztyler, G. Civitarese, and H. Stuckenschmidt, “Unsupervised recognition of interleaved activities of daily living through ontological and probabilistic reasoning,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2016, pp. 1–12.
    [14]
    D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based methods for action representation, segmentation and recognition,” Comput. Vis. Image Understanding, vol. 115, no. 2, pp. 224–241, 2011.
    [15]
    L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” in Proc. Int. Conf. Pervasive Comput., 2004, pp. 1–17.
    [16]
    J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, “A hybrid discriminative/generative approach for modeling human activities,” in Proc. Int. Joint Conf. Artif. Intell., 2005, pp. 766–772.
    [17]
    D. Riboni, C. Bettini, G. Civitarese, Z. H. Janjua, and R. Helaoui, “SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment,” Artif. Intell. Med., vol. 67, pp. 57–74, 2016.
    [18]
    J. J.-C. Ying, B.-H. Lin, V. S. Tseng, and S.-Y. Hsieh, “Transfer learning on high variety domains for activity recognition,” in Proc. ASE BigData Social Informatics, 2015, pp. 37:1–37:6.
    [19]
    R. S. Sutton, A. G. Barto, et al., Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 1998.
    [20]
    L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 594–611, Apr. 2006.
    [21]
    P. Palmes, H. K. Pung, T. Gu, W. Xue, and S. Chen, “Object relevance weight pattern mining for activity recognition and segmentation,” Pervasive Mobile Comput., vol. 6, no. 1, pp. 43–57, 2010.
    [22]
    D. Riboni and M. Murtas, “Web mining & computer vision: New partners for object-based activity recognition,” in Proc. IEEE 26th Int. Conf. Enabling Technol.: Infrastructure Collaborative Enterprises, 2017, pp. 158–163.
    [23]
    D. Riboni and C. Bettini, “OWL 2 modeling and reasoning with complex human activities,” Pervasive Mobile Comput., vol. 7, no. 3, pp. 379–395, 2011.
    [24]
    G. Meditskos, E. Kontopoulos, and I. Kompatsiaris, “Knowledge-driven activity recognition and segmentation using context connections,” in Proc. Int. Semantic Web Conf., 2014, pp. 260–275.
    [25]
    G. Okeyo, L. Chen, H. Wang, and R. Sterritt, “Dynamic sensor data segmentation for real-time knowledge-driven activity recognition,” Pervasive Mobile Comput., vol. 10, Part B, pp. 155–172, 2014.
    [26]
    D. Riboni and C. Bettini, “COSAR: Hybrid reasoning for context-aware activity recognition,” Pers. Ubiquitous Comput., vol. 15, no. 3, pp. 271–289, 2011.
    [27]
    R. Helaoui, D. Riboni, and H. Stuckenschmidt, “A probabilistic ontological framework for the recognition of multilevel human activities,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2013, pp. 345–354.
    [28]
    J. Ye, G. Stevenson, and S. Dobson, “USMART: An unsupervised semantic mining activity recognition technique,” ACM Trans. Interactive Intell. Syst., vol. 4, no. 4, pp. 16:1–16:27, 2014.
    [29]
    J. Wan, M. J. O'Grady, and G. M. P. O'Hare, “Dynamic sensor event segmentation for real-time activity recognition in a smart home context,” Pers. Ubiquitous Comput., vol. 19, no. 2, pp. 287–301, 2015.
    [30]
    S. Aminikhanghahi and D. J. Cook, “Using change point detection to automate daily activity segmentation,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops, 2017, pp. 262–267.
    [31]
    D. Triboan, L. Chen, F. Chen, and Z. Wang, “Semantic segmentation of real-time sensor data stream for complex activity recognition,” Pers. Ubiquitous Comput., vol. 21, no. 3, pp. 411–425, 2017.
    [32]
    F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, The Description Logic Handbook: Theory, Implementation and Applications, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2010.
    [33]
    M. Chekol, J. Huber, C. Meilicke, and H. Stuckenschmidt, “Markov logic networks with numerical constraints,” in Proc. Eur. Conf. Artif. Intell., 2016, pp. 1–9.
    [34]
    G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Tracking activities in complex settings using smart environment technologies,” Int. J. Biosci. Psychiatry Technol., vol. 1, no. 1, pp. 25–35, 2009.
    [35]
    O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, “Window size impact in human activity recognition,” Sensors, vol. 14, no. 4, pp. 6474–6499, 2014.
    [36]
    N. C. Krishnan and D. J. Cook, “Activity recognition on streaming sensor data,” Pervasive Mobile Comput., vol. 10, pp. 138–154, 2014.
    [37]
    G. Civitarese, D. Riboni, C. Bettini, Z. H. Janjua, and R. Helaoui, “NECTAR: Knowledge-based collaborative active learning for activity recognition,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun., 2018, pp. 1–10.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Spectrum
    IEEE Spectrum  Volume 57, Issue 12
    Dec. 2020
    56 pages

    Publisher

    IEEE Press

    Publication History

    Published: 01 December 2020

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Aug 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media