Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/MeMeA49120.2020.9137211guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Analysing performances of Heart Rate Variability measurement through a smartwatch

Published: 01 June 2020 Publication History

Abstract

This paper presents the experimental performance assessment of a smartwatch (SW) measuring the heart rate variability (HRV), compared to a multi-parametric chest belt that is considered as a reference sensor. HRV from smartwatch can be extracted with two methods: directly from internal onboard processing of the device or by post-processing data collected from the photoplethysmography signal. To evaluate the uncertainty of both methods, measurements were performed while users were sitting at rest, wearing the SW on the preferred wrist and a chest belt that can collect electrocardiographic signal, used as reference measurement. Measurements from SW and belt were compared turning out to provide that HRV measured with the SW (onboard processing) has an uncertainty of 0.95% with a coverage factor k = 2, corresponding to ± 4 ms; while HRV extracted from the PPG signal has an uncertainty of 1.2%, corresponding to ± 6 ms, indicating that at rest condition the HRV measured directly with the onboard system of the SW can be used to assess correctly the HRV.

References

[1]
C. A. Millán, N. A. Girón, e D. M. Lopez, «Analysis of Relevant Features from Photoplethysmographic Signals for Atrial Fibrillation Classification», International Journal of Environmental Research and Public Health, vol. 17, n. 2, pag. 498, gen. 2020. 10.3390/ijerph17020498.
[2]
D. Biswas et al., «CorNET: Deep Learning Framework for PPG- Based Heart Rate Estimation and Biometric Identification in Ambulant Environment», IEEE Transactions on Biomedical Circuits and Systems, vol. 13, n. 2, pagg. 282-291, apr. 2019. 10.1109/TBCAS.2019.2892297.
[3]
E. Jovanov, «Wearables Meet IoT: Synergistic Personal Area Networks (SPANs)», Sensors, vol. 19, n. 19, pag. 4295, gen. 2019. 10.3390/s19194295.
[4]
W. -H. Lin, D. Wu, C. Li, H. Zhang, e Y. -T. Zhang, «Comparison of Heart Rate Variability from PPG with That from ECG», in The International Conference on Health Informatics, Cham, 2014, pagg. 213-215. 10.1007/978-3-319-03005-0_54.
[5]
A. Noda, J. Hayano, N. Ito, S. Miyata, F. Yasuma, e Y. Yasuda, «Very low frequency component of heart rate variability as a marker for therapeutic efficacy in patients with obstructive sleep apnea: Preliminary study», J Res Med Sci, vol. 24, set. 2019. 10.4103/jrms.JRMS_62_18.
[6]
R. S. Singh, B. S. Saini, e R. K. Sunkaria, «Arrhythmia detection based on time-frequency features of heart rate variability and back- propagation neural network», Iran J Comput Sci, vol. 2, n. 4, pagg. 245-257, dic. 2019. 10.1007/s42044-019-00042-1.
[7]
G. Giannakakis, K. Marias, e M. Tsiknakis, «A stress recognition system using HRV parameters and machine learning techniques», in 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), set. 2019, pagg. 269-272. 10.1109/AIIW.2019.8925142.
[8]
H. Zhu, H. Wang, Z. Liu, D. Li, G. Kou, e C. Li, «Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments», Sci. Total Environ., vol. 616-617, pagg. 1124-1133, mar. 2018. 10.1016/j.scitotenv.2017.10.208.
[9]
K. N. Nkurikiyeyezu, Y. Suzuki, e G. F. Lopez, «Heart rate variability as a predictive biomarker of thermal comfort», J Ambient Intell Human Comput, vol. 9, n. 5, pagg. 1465-1477, ott. 2018. 10.1007/s12652-017-0567-4.
[10]
K. N. Nkurikiyeyezu, Y. Suzuki, Y. Tobe, G. F. Lopez, e K. Itao, «Heart rate variability as an indicator of thermal comfort state», in 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), set. 2017, pagg. 1510-1512. 10.23919/SICE.2017.8105506.
[11]
J. Kim, T. Hong, M. Kong, e K. Jeong, «Building occupants’ psychophysiological response to indoor climate and CO2 concentration changes in office buildings», Building and Environment, vol. 169, pag. 106596, feb. 2020. 10.1016/j.buildenv.2019.106596.
[12]
T. Bhowmik, J. Dey, e V. N. Tiwari, «A novel method for accurate estimation of HRV from smartwatch PPG signals», in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), lug. 2017, pagg. 109-112. 10.1109/EMBC.2017.8036774.
[13]
D. Giles, N. Draper, e W. Neil, «Validity of the Polar V800 heart rate monitor to measure RR intervals at rest», Eur J Appl Physiol, vol. 116, pagg. 563-571, 2016. 10.1007/s00421-015-3303-9.
[14]
D. Hernando, S. Roca, J. Sancho, Á. Alesanco, e R. Bailón, «Validation of the Apple Watch for Heart Rate Variability Measurements during Relax and Mental Stress in Healthy Subjects», Sensors, vol. 18, n. 8, pag. 2619, ago. 2018. 10.3390/s18082619.
[15]
J. Cassirame, R. Vanhaesebrouck, S. Chevrolat, e L. Mourot, «Accuracy of the Garmin 920 XT HRM to perform HRV analysis», Australas Phys Eng Sci Med, vol. 40, n. 4, pagg. 831-839, dic. 2017. 10.1007/s13246-017-0593-8.
[16]
S. Casaccia, F. Pietroni, A. Calvaresi, G. Revel, e L. Scalise, «Smart Monitoring of User’s Health at Home: Performance Evaluation and Signal Processing of a Wearable Sensor for the Measurement of Heart Rate and Breathing Rate», feb. 2016. 10.5220/0005694901750182.
[17]
G. Cosoli, S. Spinsante, e L. Scalise, «Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological characteristics», Measurement, vol. 159, pag. 107789, lug. 2020. 10.1016/j.measurement.2020.107789.
[18]
A. Sahoo, P. Manimegalai, e K. Thanushkodi, «Wavelet based pulse rate and Blood pressure estimation system from ECG and PPG signals», in 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), mar. 2011, pagg. 285-289. 10.1109/ICCCET.2011.5762486.
[19]
J. Pan e W. J. Tompkins, «A real-time QRS detection algorithm», IEEE Transactions on Biomedical Engineering, mar. 1985.
[20]
S. Aras, T. Johnson, K. Cabulong, e C. Gniady, «GreenMonitor: Extending battery life for continuous heart rate monitoring in smartwatches», in 2015 17th International Conference on E-health Networking, Application Services (HealthCom), ott. 2015, pagg. 317-322. 10.1109/HealthCom.2015.7454518.
[21]
H. S. Shin, C. Lee, e M. Lee, «Adaptive threshold method for the peak detection of photoplethysmographic waveform», Comput. Biol. Med., vol. 39, n. 12, pagg. 1145-1152, dic. 2009. 10.1016/j.compbiomed.2009.10.006.
[22]
S. Casaccia, E. J. Sirevaag, E. J. Richter, J. A. O’Sullivan, L. Scalise, e J. W. Rohrbaugh, «Features of the non-contact carotid pressure waveform: Cardiac and vascular dynamics during rebreathing», Review of Scientific Instruments, vol. 87, n. 10, pag. 102501, ott. 2016. 10.1063/1.4964624.
[23]
S. Lahmiri, «Wavelet low- and high-frequency components as features for predicting stock prices with backpropagation neural networks», Journal of King Saud University - Computer and Information Sciences, vol. 26, n. 2, pagg. 218-227, lug. 2014. 10.1016/j.jksuci.2013.12.001.
[24]
E. Kasuya, «On the use of r and r squared in correlation and regression», Ecological Research, vol. 34, n. 1, pagg. 235-236, gen. 2019. 10.1111/1440-1703.1011.
[25]
P. J. Rousseeuw e M. Hubert, «Robust statistics for outlier detection», WIREs Data Mining and Knowledge Discovery, vol. 1, n. 1, pagg. 73-79, 2011. 10.1002/widm.2.
[26]
J. Zhang, «Effect of Age and Sex on Heart Rate Variability in Healthy Subjects», Journal of Manipulative and Physiological Therapeutics, vol. 30, n. 5, pagg. 374-379, giu. 2007. 10.1016/j.jmpt.2007.04.001.

Cited By

View all
  • (2023)Knowing Your Heart Condition AnytimeProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36108717:3(1-28)Online publication date: 27-Sep-2023
  • (2021)Smartwatches selection: market analysis and metrological characterization on the measurement of number of steps2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)10.1109/MeMeA52024.2021.9478770(1-5)Online publication date: 23-Jun-2021
  • (2021)Heart Rate Variability Analysis With Wearable Devices: Influence of Artifact Correction Method on Classification Accuracy for Emotion Recognition2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)10.1109/I2MTC50364.2021.9459828(1-6)Online publication date: 17-May-2021

Index Terms

  1. Analysing performances of Heart Rate Variability measurement through a smartwatch
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
          Jun 2020
          845 pages

          Publisher

          IEEE Press

          Publication History

          Published: 01 June 2020

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 01 Nov 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Knowing Your Heart Condition AnytimeProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36108717:3(1-28)Online publication date: 27-Sep-2023
          • (2021)Smartwatches selection: market analysis and metrological characterization on the measurement of number of steps2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)10.1109/MeMeA52024.2021.9478770(1-5)Online publication date: 23-Jun-2021
          • (2021)Heart Rate Variability Analysis With Wearable Devices: Influence of Artifact Correction Method on Classification Accuracy for Emotion Recognition2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)10.1109/I2MTC50364.2021.9459828(1-6)Online publication date: 17-May-2021

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media