Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1109/SC.2014.59acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Metascalable quantum molecular dynamics simulations of hydrogen-on-demand

Published: 16 November 2014 Publication History

Abstract

We enabled an unprecedented scale of quantum molecular dynamics simulations through algorithmic innovations. A new lean divide-and-conquer density functional theory algorithm significantly reduces the prefactor of the O(N) computational cost based on complexity and error analyses. A globally scalable and locally fast solver hybridizes a global real-space multigrid with local plane-wave bases. The resulting weak-scaling parallel efficiency was 0.984 on 786,432 IBM Blue Gene/Q cores for a 50.3 million-atom (39.8 trillion degrees-of-freedom) system. The time-to-solution was 60-times less than the previous state-of-the-art, owing to enhanced strong scaling by hierarchical band-spacedomain decomposition and high floating-point performance (50.5% of the peak). Production simulation involving 16,661 atoms for 21,140 time steps (or 129,208 self-consistent-field iterations) revealed a novel nanostructural design for on-demand hydrogen production from water, advancing renewable energy technologies. This metascalable (or "design once, scale on new architectures") algorithm is used for broader applications within a recently proposed divide-conquer-recombine paradigm.

References

[1]
Car, R. and Parrinello, M., 1985. Unified approach for molecular-dynamics and density-functional theory. Physical Review Letters 55, 22 (Nov 25), 2471--2474.
[2]
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., 1992. Iterative minimization techniques for ab initio total-energy calculations - molecular-dynamics and conjugate gradients. Reviews of Modern Physics 64, 4 (Oct 1), 1045--1097.
[3]
Rahman, A., 1964. Correlations in the motion of atoms in liquid argon. Physical Review 136, 2A (Oct 19), A405-A411.
[4]
Hohenberg, P. and Kohn, W., 1964. Inhomogeneous electron gas. Physical Review 136, 3B (Nov 9), B864-B871.
[5]
Kohn, W. and Sham, L. J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review 140, 4A (Nov 15), A1133-A1138.
[6]
The three most cited articles in the history of Physical Review journals are those on DFT; see Redner, S., 2005. Physics Today 58, 6 (June), 49--54.
[7]
Kohn, W., 1999. Nobel lecture: electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics 71, 5 (Oct), 1253--1266.
[8]
Kikuchi, H., Kalia, R. K., Nakano, A., Vashishta, P., Iyetomi, H., Ogata, S., Kouno, T., Shimojo, F., Tsuruta, K., and Saini, S., 2002. Collaborative simulation Grid: multiscale quantum-mechanical/classical atomistic simulations on distributed PC clusters in the US and Japan. Proceedings of Supercomputing, SC02.
[9]
Takemiya, H., Tanaka, Y., Sekiguchi, S., Ogata, S., Kalia, R. K., Nakano, A., and Vashishta, P., 2006. Sustainable adaptive Grid supercomputing: multiscale simulation of semiconductor processing across the Pacific. Proceedings of Supercomputing, SC06.
[10]
Warshel, A. and Karplus, M., 1972. Calculation of ground and excited-state potential surfaces of conjugated molecules. 1. formulation and parametrization. Journal of the American Chemical Society 94, 16 (Aug), 5612--5625.
[11]
Warshel, A. and Levitt, M., 1976. Theoretical studies of enzymic reactions - dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. Journal of Molecular Biology 103, 2 (May 15), 227--249.
[12]
Goedecker, S., 1999. Linear scaling electronic structure methods. Reviews of Modern Physics 71, 4 (Jul 1), 1085--1123.
[13]
Bowler, D. R. and Miyazaki, T., 2012. O(N) methods in electronic structure calculations. Reports on Progress in Physics 75, 3 (Mar), 036503.
[14]
Nakano, A., Kalia, R. K., Vashishta, P., Campbell, T. J., Ogata, S., Shimojo, F., and Saini, S., 2001. Scalable atomistic simulation algorithms for materials research. Proceedings of Supercomputing, SC01.
[15]
Kohn, W., 1996. Density functional and density matrix method scaling linearly with the number of atoms. Physical Review Letters 76, 17 (Apr 22), 3168--3171.
[16]
Prodan, E. and Kohn, W., 2005. Nearsightedness of electronic matter. Proceedings of the National Academy of Sciences 102, 33 (Aug 16), 11635--11638.
[17]
Benzi, M., Boito, P., and Razouk, N., 2013. Decay properties of spectral projectors with applications to electronic structure. SIAM Review 55, 1 (Feb 7), 3--64.
[18]
Yang, W. T., 1991. Direct calculation of electron-density in density-functional theory. Physical Review Letters 66, 11 (Mar 18), 1438--1441.
[19]
Dixon, S. L. and Merz, K. M., 1997. Fast, accurate semiempirical molecular orbital calculations for macromolecules. Journal of Chemical Physics 107, 3 (July 15), 879--893.
[20]
Shimojo, F., Kalia, R. K., Nakano, A., and Vashishta, P., 2005. Embedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation based on linear-scaling density functional theory. Computer Physics Communications 167, 3 (May 1), 151--164.
[21]
Ozaki, T., 2006. O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations. Physical Review B 74, 24 (Dec), 245101.
[22]
Kobayashi, M. and Nakai, H., 2008. Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. Journal of Chemical Physics 129, 4 (Jul 28), 044103.
[23]
Shimojo, F., Kalia, R. K., Nakano, A., and Vashishta, P., 2008. Divide-and-conquer density functional theory on hierarchical real-space grids: parallel implementation and applications. Physical Review B 77, 8 (Feb 15), 085103.
[24]
Ohba, N., Ogata, S., Kouno, T., Tanmura, T., and Kobayashi, R., 2012. Linear scaling algorithm of real-space density functional theory of electrons with correlated overlapping domains. Computer Physics Communications 183, 8 (Aug), 1664--1673.
[25]
Nakano, A., Kalia, R. K., Nomura, K., Sharma, A., Vashishta, P., Shimojo, F., Van Duin, A. C. T., Goddard, W. A., Biswas, R., Srivastava, D., and Yang, L. H., 2008. De novo ultrascale atomistic simulations on high-end parallel supercomputers. International Journal of High Performance Computing Applications 22, 1 (Feb), 113--128.
[26]
Nomura, K., Dursun, H., Seymour, R., Wang, W., Kalia, R. K., Nakano, A., Vashishta, P., Shimojo, F., and Yang, L. H., 2009. A metascalable computing framework for large spatiotemporal-scale atomistic simulations. Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS 2009.
[27]
Transferability signifies that the accuracy of an approximation holds for broad atomic configurations beyond those used in fitting. Using a large basis set as in this work is essential for achieving the transferability.
[28]
Shimojo, F., Nakano, A., Kalia, R. K., and Vashishta, P., 2009. Enhanced reactivity of nanoenergetic materials: a first-principles molecular dynamics study based on divide-and-conquer density functional theory. Applied Physics Letters 95, 4 (Jul 27), 043114.
[29]
Shimojo, F., Kalia, R. K., Kunaseth, M., Nakano, A., Nomura, K., Ohmura, S., Shimamura, K., and Vashishta, P., 2014. A divide-conquer-recombine algorithmic paradigm for multiscale materials modeling. Journal of Chemical Physics 140, 18 (May 14), 18A529.
[30]
Shimamura, K., Shimojo, F., Kalia, R. K., Nakano, A., Nomura, K., and Vashishta, P., 2014. Hydrogen-on-demand using metallic alloy nanoparticles in water. Nano Letters 14, 7 (Jul 9), 4090--4096.
[31]
Shimojo, F., Kalia, R. K., Nakano, A., Nomura, K., and Vashishta, P., 2008. Metascalable molecular dynamics simulation of nano-mechano-chemistry. Journal of Physics-Condensed Matter 20, 29 (Jul 23), 294204.
[32]
Goedecker, S. and Colombo, L., 1994. Tight binding molecular dynamics. Proceedings of Supercomputing, SC94, 670--672.
[33]
Ujfalussy, B., Wang, X., Zhang, X., Nicholson, D. M. C., Shelton, W. A., Stocks, G. M., Canning, A., Wang, Y., and Gyorffy, B. L., 1998. High performance first principles method for complex magnetic properties. Proceedings of Supercomputing, SC98.
[34]
Gygi, F., Draeger, E., De Supinski, B. R., Yates, R. K., Franchetti, F., Kral, S., Lorenz, J., Ueberhuber, C. W., Gunneis, J. A., and Sexton, J. C., 2005. Large-scale first-principles molecular dynamics simulations on the BlueGene/L platform using the Qbox code. Proceedings of Supercomputing, SC05.
[35]
Wang, L. W., Lee, B., Shan, H., Zhao, Z., Meza, J., Strohmaier, E., and Bailey, D. H., 2008. Linearly scaling 3D fragment method for large-scale electronic structure calculations. Proceedings of Supercomputing, SC08.
[36]
Eisenbach, M., Zhou, C. G., Nicholson, D. M., Brown, G., Larkin, J., and Schulthess, T. C., 2009. A scalable method for ab initio computation of free energies in nanoscale systems. Proceedings of Supercomputing, SC09.
[37]
Hasegawa, Y., Iwata, J., Tsuji, M., Takahashi, D., Oshiyama, A., Minami, K., Boku, T., Shoji, F., Uno, A., Kurokawa, M., Inoue, H., Miyoshi, I., and Yokokawa, M., 2011. First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer. Proceedings of Supercomputing, SC11.
[38]
Kitaura, K., Ikeo, E., Asada, T., Nakano, T., and Uebayasi, M., 1999. Fragment molecular orbital method: an approximate computational method for large molecules. Chemical Physics Letters 313, 3-4 (Nov 12), 701--706.
[39]
Ikegami, T., Ishida, T., Fedorov, D. G., Kitaura, K., Inadomi, Y., Umeda, H., Yokokawa, M., and Sekiguchi, S., 2005. Full electron calculation beyond 20,000 atoms: ground electronic state of photosynthetic proteins Proceedings of Supercomputing, SC05.
[40]
Beran, G. J. O. and Hirata, S., 2012. Fragment and localized orbital methods in electronic structure theory. Physical Chemistry and Chemical Physics 14, 21 (Jun 7), 7559--7561.
[41]
Osei-Kuffuor, D. and Fattebert, J.-L., 2014. Accurate and scalable O(N) algorithm for first-principles molecular-dynamics. Physical Review Letters 112, 4 (Jan 31), 046401.
[42]
Sena, A. M. P., Miyazaki, T., and Bowler, D. R., 2011. Linear scaling constrained density functional theory in CONQUEST. Journal of Chemical Theory and Computation 7, 4 (Apr), 884--889.
[43]
Skylaris, C. K., Haynes, P. D., Mostofi, A. A., and Payne, M. C., 2005. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. Journal of Chemical Physics 122, 8 (Feb 22), 084119.
[44]
Dziedzic, J., Hill, Q., and Skylaris, C. K., 2013. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions. Journal of Chemical Physics 139, 21 (Dec 7), 214103.
[45]
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics-Condensed Matter 14, 11 (Mar 25), 2745--2779.
[46]
Duy, T. V. T. and Ozaki, T., 2014. A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations. Computer Physics Communications 185, 3 (Mar), 777--789.
[47]
Shimojo, F., Ohmura, S., Kalia, R. K., Nakano, A., and Vashishta, P., 2010. Molecular dynamics simulations of rapid hydrogen production from water using aluminum clusters as catalyzers. Physical Review Letters 104, 12 (Mar 26), 126102.
[48]
Shimamura, K., Shimojo, F., Kalia, R. K., Nakano, A., and Vashishta, P., 2013. Bonding and structure of ceramic-ceramic interfaces. Physical Review Letters 111, 6 (Aug 8), 066103.
[49]
Nakano, A. and Ichimaru, S., 1989. Dynamic correlations in electron liquids. 1. General formalism. Physical Review B 39, 8 (Mar 15), 4930--4937.
[50]
Bekas, C. and Curioni, A., 2012. Algorithmic rethinking and code reengineering for truly massively parallel ab initio molecular dynamics simulations. In Hierarchical Methods for Dynamics in Complex Molecular Systems, J. Grotendorst, G. Sutmann, G. Gompper and D. Marx Eds. Julich Supercomputing Center, Julich, Germany, 235--268.
[51]
Puschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R. W., and Rizzolo, N., 2005. SPIRAL: code generation for DSP transforms. Proceedings of IEEE 93, 2 (Feb), 232--275.
[52]
Frigo, M. and Johnson, S. G., 2005. The design and implementation of FFTW3. Proceedings of IEEE 93, 2 (Feb), 216--231.
[53]
Nakano, A., Vashishta, P., and Kalia, R. K., 1994. Massively-parallel algorithms for computational nanoelectronics based on quantum molecular dynamics. Computer Physics Communications 83, 2-3 (Dec), 181--196.
[54]
Lin, L., Lu, J. F., Ying, L. X., and E, W. N., 2012. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation. Journal of Computational Physics 231, 4 (Feb 20), 2140--2154.
[55]
Nakano, A., 2008. A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation. Computer Physics Communications 178, 4 (Feb 15), 280--289.
[56]
Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41, 11 (Apr 15), 7892--7895.
[57]
Haring, R. A., Ohmacht, M., Fox, T. W., Gschwind, M. K., Satterfield, D. L., Sugavanam, K., Coteus, P. W., Heidelberger, P., Blumrich, M. A., Wisniewski, R. W., Gara, A., Chiu, G. L. T., Boyle, P. A., Christ, N. H., and Kim, C., 2012. The IBM Blue Gene/Q compute chip. IEEE Micro 32, 2 (Mar-Apr), 48--60.
[58]
Kunaseth, M., Kalia, R. K., Nakano, A., Vashishta, P., Richards, D. F., and Glosli, J. N., 2013. Performance characteristics of hardware transactional memory for molecular dynamics application on BlueGene/Q: toward efficient multithreading strategies for large-scale scientific applications. Proceedings of the International Workshop on Parallel and Distributed Scientific and Engineering Computing, PDSEC-13.
[59]
Chen, D., Eisley, N. A., Heidelberger, P., Senger, R. M., Sugawara, Y., Kumar, S., Salapura, V., Satterfield, D. L., Steinmacher-Burow, B., and Parker, J. J., 2012. The IBM Blue Gene/Q interconnection fabric. IEEE Micro 32, 1 (Jan-Feb), 32--43.
[60]
Chen, D., Eisley, N., Heidelberger, P., Kumar, S., Mamidala, A., Petrini, F., Senger, R., Sugawara, Y., Walkup, R., Steinmacher-Burow, B., Choudhury, A., Sabharwal, Y., Singhal, S., and Parker, J. J., 2012. Looking under the hood of the IBM Blue Gene/Q network. Proceedings of Supercomputing, SC12.
[61]
Gilge, M., 2013. IBM System Blue Gene Solution Blue Gene/Q Application Development. IBM Redbooks.
[62]
Peng, L., Seymour, R., Nomura, K., Kalia, R. K., Nakano, A., Vashishta, P., Loddoch, A., Netzband, M., Volz, W. R., and Wong, C. C., 2009. High-order stencil computations on multicore clusters. Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS 2009.
[63]
https://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/Hpct-bgq_0.pdf
[64]
Gunnels, J. A., 2012. Making good enough... better: addressing the multiple objectives of high-performance parallel software with a mixed global-local worldview. ICERM, Brown University.
[65]
Omeltchenko, A., Campbell, T. J., Kalia, R. K., Liu, X. L., Nakano, A., and Vashishta, P., 2000. Scalable I/O of large-scale molecular dynamics simulations: A data-compression algorithm. Computer Physics Communications 131, 1-2 (Sep 1), 78--85.
[66]
Roach, P. J., Woodward, W. H., Castleman, A. W., Reber, A. C., and Khanna, S. N., 2009. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science 323, 5913 (Jan 23), 492--495.
[67]
Muhich, C. L., Evanko, B. W., Weston, K. C., Lichty, P., Liang, X. H., Martinek, J., Musgrave, C. B., and Weimer, A. W., 2013. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 341, 6145 (Aug 2), 540--542.
[68]
Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., and Steinfeld, A., 2010. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 6012 (Dec 23), 1797--1801.
[69]
http://cacs.usc.edu/download/S1.mov
[70]
Wu, C. J., Fried, L. E., Yang, L. H., Goldman, N., and Bastea, S., 2009. Catalytic behaviour of dense hot water. Nature Chemistry 1, 1 (Apr 1), 57--62.
[71]
Chen, X., Zhao, Z., Hao, M., and Wang, D., 2013. Hydrogen generation by splitting water with Al-Li alloys. International Journal of Energy Research 37, 13 (Oct 25), 1624--1634.
[72]
Greengard, L. and Rokhlin, V., 1987. A fast algorithm for particle simulations. Journal of Computational Physics 73, 2 (Dec), 325--348.
[73]
White, C. A. and Headgordon, M., 1994. Derivation and efficient implementation of the fast multipole method. Journal of Chemical Physics 101, 8 (Oct 15), 6593--6605.
[74]
Nakano, A., Kalia, R. K., and Vashishta, P., 1994. Multiresolution molecular-dynamics algorithm for realistic materials modeling on parallel computers. Computer Physics Communications 83, 2-3 (Dec), 197--214.
[75]
Ogata, S., Campbell, T. J., Kalia, R. K., Nakano, A., Vashishta, P., and Vemparala, S., 2003. Scalable and portable implementation of the fast multipole method on parallel computers. Computer Physics Communications 153, 3 (Jul 1), 445--461.
[76]
Cuppen, J. J. M., 1981. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numerische Mathematik 36, 2, 177--195.
[77]
Gansterer, W. N., Ward, R. C., and Muller, R. P., 2002. An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems. ACM Transactions on Mathematical Software 28, 1 (Mar), 45--58.
[78]
Nakano, A., 1997. Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Computer Physics Communications 104, 1-3 (Aug), 59--69.
[79]
Kunaseth, M., Kalia, R. K., Nakano, A., Nomura, K., and Vashishta, P., 2013. A scalable parallel algorithm for dynamic range-limited n-tuple computation in many-body molecular dynamics simulation. Proceedings of Supercomputing, SC13.
[80]
Okiyama, Y., Tsukamoto, T., Watanabe, C., Fukuzawa, K., Tanaka, S., and Mochizuki, Y., 2013. Modeling of peptide-silica interaction based on four-body corrected fragment molecular orbital (FMO4) calculations. Chemical Physics Letters 566 (Apr 12), 25--31.
[81]
Tanaka, S., Watanabe, C., and Okiyama, Y., 2013. Statistical correction to effective interactions in the fragment molecular orbital method. Chemical Physics Letters 556 (Jan 29), 272--277.
[82]
Tsuneyuki, S., Kobori, T., Akagi, K., Sodeyama, K., Terakura, K., and Fukuyama, H., 2009. Molecular orbital calculation of biomolecules with fragment molecular orbitals. Chemical Physics Letters 476, 1-3 (Jul 7), 104--108.
[83]
Kobori, T., Sodeyama, K., Otsuka, T., Tateyama, Y., and Tsuneyuki, S., 2013. Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. Journal of Chemical Physics 139, 9 (Sep 7), 094113.
[84]
Gollub, C., Avdoshenko, S., Gutierrez, R., Berlin, Y., and Cuniberti, G., 2012. Charge migration in organic materials: can propagating charges affect the key physical quantities controlling their motion? Israel Journal of Chemistry 52, 5 (May), 452--460.
[85]
Kitoh-Nishioka, H. and Ando, K., 2012. Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center. Journal of Physical Chemistry B 116, 43 (Nov 1), 12933--12945.
[86]
Ren, J. F., Vukmirovic, N., and Wang, L. W., 2013. Nonadiabatic molecular dynamics simulation for carrier transport in a pentathiophene butyric acid monolayer. Physical Review B 87, 20 (May 13), 205117.
[87]
Mou, W., Hattori, S., Rajak, P., Shimojo, F., and Nakano, A., 2013. Nanoscopic mechanisms of singlet fission in amorphous molecular solid. Applied Physics Letters 102, 17 (Apr 29), 173301.

Cited By

View all
  • (2020)Quantum Dynamics at ScaleProceedings of the International Conference on High Performance Computing in Asia-Pacific Region10.1145/3368474.3368489(1-10)Online publication date: 15-Jan-2020
  • (2018)Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular DynamicsProceedings of the International Conference on High Performance Computing in Asia-Pacific Region10.1145/3149457.3149463(159-170)Online publication date: 28-Jan-2018
  • (2016)A high-throughput multiobjective genetic-algorithm workflow for in situ training of reactive molecular-dynamics force fieldsProceedings of the 24th High Performance Computing Symposium10.22360/SpringSim.2016.HPC.004(1-6)Online publication date: 3-Apr-2016
  • Show More Cited By

Index Terms

  1. Metascalable quantum molecular dynamics simulations of hydrogen-on-demand

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SC '14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
      November 2014
      1054 pages
      ISBN:9781479955008
      • General Chair:
      • Trish Damkroger,
      • Program Chair:
      • Jack Dongarra

      Sponsors

      Publisher

      IEEE Press

      Publication History

      Published: 16 November 2014

      Check for updates

      Author Tags

      1. density functional theory
      2. divide-and-conquer
      3. on-demand hydrogen production

      Qualifiers

      • Research-article

      Conference

      SC '14
      Sponsor:

      Acceptance Rates

      SC '14 Paper Acceptance Rate 83 of 394 submissions, 21%;
      Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

      Upcoming Conference

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 09 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Quantum Dynamics at ScaleProceedings of the International Conference on High Performance Computing in Asia-Pacific Region10.1145/3368474.3368489(1-10)Online publication date: 15-Jan-2020
      • (2018)Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular DynamicsProceedings of the International Conference on High Performance Computing in Asia-Pacific Region10.1145/3149457.3149463(159-170)Online publication date: 28-Jan-2018
      • (2016)A high-throughput multiobjective genetic-algorithm workflow for in situ training of reactive molecular-dynamics force fieldsProceedings of the 24th High Performance Computing Symposium10.22360/SpringSim.2016.HPC.004(1-6)Online publication date: 3-Apr-2016
      • (2014)Divide-Conquer-RecombineProceedings of the 20 Years of Beowulf Workshop on Honor of Thomas Sterling's 65th Birthday10.1145/2737909.2737911(17-27)Online publication date: 13-Oct-2014

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media