Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On Nonblocking Multicast Fat-Tree Data Center Networks with Server Redundancy

Published: 01 April 2015 Publication History

Abstract

Fat-tree networks have been widely adopted as network topologies in data center networks (DCNs). However, it is costly for fat-tree DCNs to support nonblocking multicast communication, due to the large number of core switches required. Since multicast is an essential communication pattern in many cloud services and nonblocking multicast communication can ensure the high performance of such services, reducing the cost of nonblocking multicast fat-tree DCNs is very important. On the other hand, server redundancy is ubiquitous in today's data centers to provide high availability of services. In this paper, we explore server redundancy in data centers to reduce the cost of nonblocking multicast fat-tree data center networks (DCNs). First, we present a multirate network model that accurately describes the communication environment of the fat-tree DCNs. We then show that the sufficient condition on the number of core switches required for nonblocking multicast communication under the multirate model can be significantly reduced when the fat-tree DCNs are 2-redundant, i.e., each server in the data center has exactly one redundant backup. We also study the general redundant fat-tree DCNs where servers may have different numbers of redundant backups depending on the availability requirements of services they provide, and show that a higher redundancy level further reduces the cost of nonblocking multicast fat-tree DCNs. Then, to complete our analysis, we consider a practical faulty data center, where one or more active servers may fail at any time. We give a strategy to re-balance the active servers among edge switches after server failures so that the same nonblocking condition still holds. Finally, we give a multicast routing algorithm with linear time complexity to configure multicast connections in fat-tree DCNs.

References

[1]
M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture”, Proc. ACM SIGCOMM, Aug. 2008, pp. 63–74.
[2]
J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible data center network,” in Proc. ACM SIGCOMM Conf. Data Commun., Aug. 2009, pp. 51–62.
[3]
K. Bilal, S. U. Khan, L. Zhang, H. Li, K. Hayat, S. A. Madani, N. Min-Allah, L. Wang, D. Chen, M. Iqbal, C. Xu, and A. Y. Zomaya, “Quantitative comparisons of the state of the art data center architectures,” Concurrency Comput.: Practice Experience, vol. 25, no. 12, pp. 1771–1783, 2013.
[4]
K. Bilal, M. Manzano, S. U. Khan, E. Calle, K. Li, and A. Y. Zomaya, “On the characterization of the structural robustness of data center networks ”, IEEE Trans. Cloud Comput., vol. 1, no. 1, pp. 1 –, Jan.–Jun. 2013.
[5]
K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijaysekara, R. Irfan, S. Shrestha, D. Dwivedy, M. Ali, U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, “A taxonomy and survey on green data center networks,” Future Generation Comput. Syst., vol. 36, pp. 189–208, Jul. 2013.
[6]
M. Manzano, K. Bilal, E. Calle, and S. U. Khan, “On the connectivity of data center networks”, IEEE Commun. Lett., vol. 17, no. 11, pp. 2172– 2175, Nov. 2013.
[7]
A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: Research problems in data center networks”, ACM SIGCOMM Comput. Commun. Rev.: Editorial Note, vol. 39, pp. 68 –73, Jan. 2009.
[8]
R. N. Mysore, A. Pamporis, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A scalable fault-tolerant layer-2 data center network fabric” in Proc. ACM SIGCOMM Conf. Data Commun., Aug. 2009, pp. 39–50.
[9]
C. Clos, “A study of nonblocking switching networks ”, Bell Syst. Tech. J., vol. 32, pp. 406–424, 1953.
[10]
G. M. Masson, and B. W. Jordan, “Generalized multi-stage connection networks”, Networks, vol. 2, pp. 191–209, 1972 .
[11]
F. K. Hwang, “Rearrangeability of multiconnection three-stage networks”, Networks, vol. 2, pp. 301–306, 1972 .
[12]
Y. Yang, and G. M. Masson, “Nonblocking broadcast switching networks ”, IEEE Trans. Comput., vol. 40, no. 9, pp. 1005– 1015, Sep. 1991.
[13]
Y. Yang, and G. M. Masson, “The necessary conditions for Clos-type nonblocking multicast networks”, IEEE Trans. Comput., vol. 48, no. 11, pp. 1214– 1227, Nov. 1999.
[14]
M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A Berkeley view of cloud computing,” University of California, Berkeley, Tech. Rep. UCB-EECS-2009-28 , Feb. 2009.
[15]
Data center high availability clusters design guide. (2006) [Online]. Available: http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/HA_Clusters/HA_Clusters.html.
[16]
A technology and networking guide for high availability clusters extended across multiple data centers. (2009) [Online]. Available: www.cisco.com/global/EMEA/cds/corporate_marketing/HA_Clusters_White_Paper.pdf.
[17]
N. Bonvin, T. G. Papaioannou, and K. Aberer, “Cost-efficient and differentiated data availability guarantees in data clouds”, Proc. IEEE 26th Int. Conf. Data Eng., Mar. 2010, pp. 980 –983.
[18]
S. Distefano, F. Longo, and M. Scarpa, “Availability assessment of HA standby redundant clusters”, Proc. 29th IEEE Symp. Reliable Distrib. Syst., Oct. 2010, pp. 265 –274.
[19]
J. S. Turner, and R. Melen, “Multirate Clos networks ”, IEEE Commun. Mag., vol. 41, no. 10, pp. 38– 44, Oct. 2003.
[20]
R. Melen, and J. S. Turner, “Nonblocking Multirate Networks ”, SIAM J. Comput., vol. 18, no. 2, pp. 301– 313, Apr. 1989.
[21]
S. C. Liew, M.-H. Ng, and C. W. Chan, “Blocking and nonblocking multirate Clos switching networks”, IEEE/ACM Trans. Netw., vol. 6, no. 3, pp. 307– 318, Jun. 1998.
[22]
Y. Yang, “An analysis model on nonblocking multirate broadcast networks”, Proc. ACM Int. Conf. Supercomput., 1994, pp. 256–263 .
[23]
X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious routing in fat-tree based system area networks with uncertain traffic demands”, IEEE/ACM Trans. Netw., vol. 17, no. 5, pp. 1439 –1452, Oct. 2009.
[24]
Y. Yang, and J. Wang, “A more accurate analytical model on blocking probability of multicast networks”, IEEE Trans. Commun., vol. 48, no. 11, pp. 1930– 1936, Nov. 2000.
[25]
X. Yuan, “On nonblocking folded-Clos networks in computer communication environments”, Proc. IEEE Int. Parallel Distrib. Process. Symp., May. 2011, pp. 188–196.
[26]
Z. Guo, and Y. Yang, “Multicast fat-tree data center networks with bounded link oversubscription”, Proc. IEEE INFOCOM Minisymp., Turin, Italy, Apr. 2013, pp. 350–354.
[27]
Z. Guo, J. Duan, and Y. Yang, “Oversubscription bounded multicast scheduling in fat-tree data center networks”, Proc. IEEE 27th Int. Parallel Distrib. Process. Symp., May 2013, pp. 589–600.
[28]
Z. Guo, and Y. Yang, “On nonblocking multirate multicast fat-tree data center networks with server redundancy”, Proc. IEEE 26th Int. Parallel Distrib. Process. Symp., May 2012, pp. 1034–1044.
[29]
D. Li, J. Yu, J. Yu, and J. Wu, “Exploring efficient and scalable multicast routing in future data center networks”, Proc. IEEE INFOCOM, Apr. 2011, pp. 1368–1376.
[30]
K. Vishwanath, and N. Nagappan, “Characterizing cloud computing hardware reliability”, Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 193–204 .
[31]
Y. Chen, S. Jain, V. K. Adhikari, Z. L. Zhang, and K. Xu, “A first look at inter-data center traffic characteristics via Yahoo! datasets,” in Proc. IEEE INFOCOM’ 11, Mar. 2011, pp. 1620–1628.
[32]
A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, “The cost of a cloud: Research problems in data center networks”, ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68 –73, Dec. 2008.
[33]
R. E. Tarjan, “Dynamic trees as search trees via Euler tours applied to the network simplex algorithm”, Math. Program., vol. 78, pp. 169–177, 1997.
[34]
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and Applications, Englewood Cliffs, NJ, USA : Prentice Hall, 1993.
[35]
Y. Yang, “A class of interconnection networks for multicasting,” IEEE Trans. Comput., vol. 47, no. 8, Aug. 1998, pp. 899–906.
[36]
G. M. Masson and Y. Yang, “Controller for a non-blocking broadcast network,” US Patent 5,801,641, 1998.
[37]
Y. Yang and J. Wang, “On blocking probability of multicast networks,” IEEE Trans. Commun., vol. 46, no. 7, Jul. 1998, pp. 957–968.
[38]
Y. Yang and J. Wang, “Wide-sense nonblocking Clos networks under packing strategy,” IEEE Trans. Comput., vol. 48, no. 3, pp. 265-284, Mar. 1999.

Cited By

View all
  • (2021)A Combinatorial Reliability Analysis of Generic Service Function Chains in Data Center NetworksACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/34770466:3(1-24)Online publication date: 30-Sep-2021

Index Terms

  1. On Nonblocking Multicast Fat-Tree Data Center Networks with Server Redundancy
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image IEEE Transactions on Computers
          IEEE Transactions on Computers  Volume 64, Issue 4
          April 2015
          333 pages

          Publisher

          IEEE Computer Society

          United States

          Publication History

          Published: 01 April 2015

          Author Tags

          1. server redundancy
          2. Data center networks
          3. cloud computing
          4. network cost
          5. fat-trees
          6. folded-Clos networks
          7. nonblocking
          8. multicast
          9. multirate

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 10 Nov 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2021)A Combinatorial Reliability Analysis of Generic Service Function Chains in Data Center NetworksACM Transactions on Modeling and Performance Evaluation of Computing Systems10.1145/34770466:3(1-24)Online publication date: 30-Sep-2021

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media