Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Artificial Noise-Aided MIMO Physical Layer Authentication With Imperfect CSI

Published: 01 January 2021 Publication History

Abstract

Fingerprint embedding at the physical layer is a highly tunable authentication framework for wireless communication that achieves information-theoretic security by hiding a traditional HMAC tag in noise. In a multiantenna scenario, artificial noise (AN) can be transmitted to obscure the tag even further. The AN strategy, however, relies on perfect knowledge of the channel state information (CSI) between the legitimate users. When the CSI is not perfectly known, the added noise leaks into the receiver’s observations. In this article, we explore whether AN still improves security in the fingerprint embedding authentication framework with only imperfect CSI available at the transmitter and receiver. Specifically, we discuss and design detectors that account for AN leakage and analyze the adversary’s ability to recover the key from observed transmissions. We compare the detection and security performance of the optimal perfect CSI detector with the imperfect CSI robust matched filter test and a generalized likelihood ratio test (GLRT). We find that utilizing AN can greatly improve security, but suffers from diminishing returns when the quality of CSI knowledge is poor. In fact, we find that in some cases allocating additional power to AN can begin to decrease key security.

References

[1]
L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Using the physical layer for wireless authentication in time-variant channels,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2571–2579, Jul. 2008.
[2]
L. Lai, H. El Gamal, and H. V. Poor, “Authentication over noisy channels,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 906–916, Feb. 2009.
[3]
P. Baracca, N. Laurenti, and S. Tomasin, “Physical layer authentication over MIMO fading wiretap channels,” IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2564–2573, Jul. 2012.
[4]
X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wireless security enhancement: Current challenges and future developments,” IEEE Commun. Mag., vol. 54, no. 6, pp. 152–158, Jun. 2016.
[5]
P. L. Yu, B. M. Sadler, G. Verma, and J. S. Baras, “Fingerprinting by design: Embedding and authentication,” in Digital Fingerprinting, C. Wang, R. M. Gerdes, Y. Guan, and S. K. Kasera, Eds. Cham, Switzerland: Springer, 2016, pp. 69–88.
[6]
L. Xiao, T. Chen, G. Han, W. Zhuang, and L. Sun, “Game theoretic study on channel-based authentication in MIMO systems,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7474–7484, Aug. 2017.
[7]
N. Wang, T. Jiang, S. Lv, and L. Xiao, “Physical-layer authentication based on extreme learning machine,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1557–1560, Jul. 2017.
[8]
H. Fang, X. Wang, and L. Hanzo, “Learning-aided physical layer authentication as an intelligent process,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2260–2273, Mar. 2019.
[9]
J. Perazzone, E. Graves, P. Yu, and R. Blum, “Inner bound for the capacity region of noisy channels with an authentication requirement,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 126–130.
[10]
O. Kosut and J. Kliewer, “Authentication capacity of adversarial channels,” in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2018, pp. 1–5.
[11]
A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.
[12]
M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and set equality,” J. Comput. Syst. Sci., vol. 22, no. 3, pp. 265–279, Jun. 1981.
[13]
G. J. Simmons, “Authentication theory/coding theory,” in Proc. Adv. Cryptol., Santa Barbara, CA, USA, Aug. 1984, pp. 411–431.
[14]
U. Rosenbaum, “A lower bound on authentication after having observed a sequence of messages,” J. Cryptol., vol. 6, no. 3, pp. 135–156, Mar. 1993.
[15]
B. Smeets, “Bounds on the probability of deception in multiple authentication,” IEEE Trans. Inf. Theory, vol. 40, no. 5, pp. 1586–1591, Sep. 1994.
[16]
G. Verma, P. Yu, and B. M. Sadler, “Physical layer authentication via fingerprint embedding using software-defined radios,” IEEE Access, vol. 3, pp. 81–88, 2015.
[17]
P. L. Yu and B. M. Sadler, “MIMO authentication via deliberate fingerprinting at the physical layer,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 606–615, Sep. 2011.
[18]
J. B. Perazzone, P. L. Yu, B. M. Sadler, and R. S. Blum, “Fingerprint embedding authentication with artificial noise: MISO regime,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Jun. 2019, pp. 1–5.
[19]
R. Negi and S. Goel, “Secret communication using artificial noise,” in Proc. IEEE Veh. Technol. Conf., Dec. 2005, vol. 62, no. 3, p. 1906.
[20]
S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, Jun. 2008.
[21]
A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas I: The MISOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3088–3104, Jul. 2010.
[22]
X. Wu, Z. Yang, C. Ling, and X.-G. Xia, “Artificial-Noise-Aided message authentication codes with information-theoretic security,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 6, pp. 1278–1290, Jun. 2016.
[23]
X. Wu, Z. Yang, C. Ling, and X.-G. Xia, “Artificial-Noise-Aided physical layer phase challenge-response authentication for practical OFDM transmission,” IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6611–6625, Oct. 2016.
[24]
J. K. Tugnait, “Using artificial noise to improve detection performance for wireless user authentication in time-variant channels,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 377–380, Aug. 2014.
[25]
A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, Oct. 1975.
[26]
M. Walker, “Information-theoretic bounds for authentication schemes,” J. Cryptol., vol. 2, no. 3, pp. 131–143, Jan. 1990.
[27]
U. M. Maurer, “Authentication theory and hypothesis testing,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1350–1356, Jul. 2000.
[28]
A. Beemer, O. Kosut, J. Kliewer, E. Graves, and P. Yu, “Authentication against a myopic adversary,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Jun. 2019, pp. 1–5.
[29]
O. Gungor and C. E. Koksal, “On the basic limits of RF-Fingerprint-Based authentication,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4523–4543, Aug. 2016.
[30]
F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972, Aug. 2011.
[31]
A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas—Part II: The MIMOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010.
[32]
A. Hyadi, Z. Rezki, and M.-S. Alouini, “An overview of physical layer security in wireless communication systems with CSIT uncertainty,” IEEE Access, vol. 4, pp. 6121–6132, 2016.
[33]
Z. Rezki, A. Khisti, and M.-S. Alouini, “On the secrecy capacity of the wiretap channel with imperfect main channel estimation,” IEEE Trans. Commun., vol. 62, no. 10, pp. 3652–3664, Oct. 2014.
[34]
S.-C. Lin, T.-H. Chang, Y.-L. Liang, Y.-W.-P. Hong, and C.-Y. Chi, “On the impact of quantized channel feedback in guaranteeing secrecy with artificial noise: The noise leakage problem,” IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 901–915, Mar. 2011.
[35]
Y. Huang, F. S. Al-Qahtani, T. Q. Duong, and J. Wang, “Secure transmission in MIMO wiretap channels using general-order transmit antenna selection with outdated CSI,” IEEE Trans. Commun., vol. 63, no. 8, pp. 2959–2971, Aug. 2015.
[36]
M. Pei, J. Wei, K.-K. Wong, and X. Wang, “Masked beamforming for multiuser MIMO wiretap channels with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 544–549, Feb. 2012.
[37]
A. Mukherjee and A. L. Swindlehurst, “Robust beamforming for security in MIMO wiretap channels with imperfect CSI,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 351–361, Jan. 2011.
[38]
P. L. Yu, J. S. Baras, and B. M. Sadler, “Physical-layer authentication,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 1, pp. 38–51, Mar. 2008.
[39]
T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO channels with channel estimation error,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.
[40]
E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.
[41]
B. K. Chalise and B. M. Sadler, “Joint data and tag precoder optimization for MIMO physical layer authentication with embedded fingerprinting,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Jun. 2019, pp. 1–5.
[42]
T. M. Cover and J. A. Thomas, Elements Information Theory. Hoboken, NJ, USA: Wiley, 2012.
[43]
S. M. Kay, “Fundamentals of statistical signal processing, volume II:, Detection theory,” in Signal Processing. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[44]
S. S. Wilks, “The large-sample distribution of the likelihood ratio for testing composite hypotheses,” Ann. Math. Stat., vol. 9, no. 1, pp. 60–62, Mar. 1938.
[45]
A. De Maio and M. Lops, “Design principles of MIMO radar detectors,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 886–898, Jul. 2007.
[46]
J. B. Perazzone, P. L. Yu, B. M. Sadler, and R. S. Blum, “Physical layer authentication via fingerprint embedding: Min-entropy analysis: Invited presentation,” in Proc. 53rd Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2019, pp. 1–6.

Cited By

View all
  • (2024)An Optimization Framework for Active Physical-Layer AuthenticationIEEE Transactions on Mobile Computing10.1109/TMC.2022.321705523:1(164-179)Online publication date: 1-Jan-2024
  • (2024)Distributed Robust Artificial-Noise-Aided Secure Precoding for Wiretap MIMO Interference ChannelsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.348654819(10130-10140)Online publication date: 1-Jan-2024
  • (2024)Multi-User Physical Layer Authentication Based on CSI Using ResNet in Mobile IIoTIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.334009019(1896-1907)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security  Volume 16, Issue
2021
1912 pages

Publisher

IEEE Press

Publication History

Published: 01 January 2021

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Optimization Framework for Active Physical-Layer AuthenticationIEEE Transactions on Mobile Computing10.1109/TMC.2022.321705523:1(164-179)Online publication date: 1-Jan-2024
  • (2024)Distributed Robust Artificial-Noise-Aided Secure Precoding for Wiretap MIMO Interference ChannelsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.348654819(10130-10140)Online publication date: 1-Jan-2024
  • (2024)Multi-User Physical Layer Authentication Based on CSI Using ResNet in Mobile IIoTIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.334009019(1896-1907)Online publication date: 1-Jan-2024
  • (2023)PHY Layer Anonymous Precoding: Sender Detection Performance and Diversity- Multiplexing TradeoffIEEE Transactions on Wireless Communications10.1109/TWC.2023.331953223:5(4531-4545)Online publication date: 3-Oct-2023
  • (2023)Intelligent Trust Ranking Security Preserving Model for B5G/6GIEEE Transactions on Network and Service Management10.1109/TNSM.2023.323431920:3(3549-3561)Online publication date: 1-Sep-2023
  • (2022)ProtegoProceedings of the 28th Annual International Conference on Mobile Computing And Networking10.1145/3495243.3560547(55-68)Online publication date: 14-Oct-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media