Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Exploiting Fine-Grained Channel/Hardware Features for PHY-Layer Authentication in MmWave MIMO Systems

Published: 01 January 2023 Publication History

Abstract

The communication channels in millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems possess some unique fine-grained angle domain features such as channel gain, azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA). This paper combines AAoA, EAoA, channel gain as well as phase noise features to propose a novel physical layer authentication scheme for mmWave MIMO communication systems. Based on the limit posterior Bayesian Cramér-Rao bound (LPBCRB) and maximum-likelihood (ML) estimation theories, we first develop an efficient approach for the evaluation of hardware phase noise and mmWave channel features. To depict the authentication performance of the new scheme, we then apply the statistical signal processing and hypothesis testing theories to derive the closed-form expressions for false alarm and detection probabilities under the scheme. Finally, extensive numerical results are provided to validate our theoretical models and to demonstrate the capability of the proposed authentication scheme against impersonation attacks.

References

[1]
X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wireless security enhancement: Current challenges and future developments,” IEEE Commun. Mag., vol. 54, no. 6, pp. 152–158, Jun. 2016.
[2]
N. Xie, Q. Zhang, J. Chen, and H. Tan, “Privacy-preserving physical-layer authentication for non-orthogonal multiple access systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1371–1385, Apr. 2022.
[3]
N. Xie, Z. Li, and H. Tan, “A survey of physical-layer authentication in wireless communications,” IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 282–310, 1st Quart., 2021.
[4]
N. Xie, H. Tan, L. Huang, and A. X. Liu, “Physical-layer authentication in wirelessly powered communication networks,” IEEE/ACM Trans. Netw., vol. 29, no. 4, pp. 1827–1840, Aug. 2021.
[5]
N. Xie, S. Zhang, and A. X. Liu, “Physical-layer authentication in non-orthogonal multiple access systems,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1144–1157, Jun. 2020.
[6]
N. Xie, J. Chen, and L. Huang, “Physical-layer authentication using multiple channel-based features,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 2356–2366, Jan. 2021.
[7]
L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Channel-based spoofing detection in frequency-selective Rayleigh channels,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 5948–5956, Dec. 2009.
[8]
L. Xiao, X. Wan, and Z. Han, “PHY-layer authentication with multiple landmarks with reduced overhead,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1676–1687, Mar. 2018.
[9]
L. Bai, L. Zhu, J. Liu, J. Choi, and W. Zhang, “Physical layer authentication in wireless communication networks: A survey,” J. Commun. Inf. Netw., vol. 5, no. 3, pp. 237–264, Sep. 2020.
[10]
J. Liu and X. Wang, “Physical layer authentication enhancement using two-dimensional channel quantization,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4171–4182, Jun. 2016.
[11]
W. Hou, X. Wang, J. Chouinard, and A. Refaey, “Physical layer authentication for mobile systems with time-varying carrier frequency offsets,” IEEE Trans. Commun., vol. 62, no. 5, pp. 1658–1667, May 2014.
[12]
P. Hao, X. Wang, and A. Behnad, “Relay authentication by exploiting I/Q imbalance in amplify-and-forward system,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA, Dec. 2014, pp. 613–618.
[13]
A. C. Polak, S. Dolatshahi, and D. L. Goeckel, “Identifying wireless users via transmitter imperfections,” IEEE J. Sel. Areas Commun., vol. 29, no. 7, pp. 1469–1479, Aug. 2011.
[14]
P. Zhang, Y. Shen, X. Jiang, and B. Wu, “Physical layer authentication jointly utilizing channel and phase noise in MIMO systems,” IEEE Trans. Commun., vol. 68, no. 4, pp. 2446–2458, Apr. 2020.
[15]
P. Zhang, J. Liu, Y. Shen, and X. Jiang, “Exploiting channel gain and phase noise for PHY-layer authentication in massive MIMO systems,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4265–4279, 2021.
[16]
N. Wang, W. Li, P. Wang, A. Alipour-Fanid, L. Jiao, and K. Zeng, “Physical layer authentication for 5G communications: Opportunities and road ahead,” IEEE Netw., vol. 34, no. 6, pp. 198–204, Nov. 2020.
[17]
N. Wang, P. Wang, A. Alipour-Fanid, L. Jiao, and K. Zeng, “Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities,” IEEE Internet Things J., vol. 6, no. 5, pp. 8169–8181, Oct. 2019.
[18]
J. Tang, A. Xu, Y. Jiang, Y. Zhang, H. Wen, and T. Zhang, “mmWave MIMO physical layer authentication by using channel sparsity,” in Proc. IEEE Int. Conf. Artif. Intell. Inf. Syst. (ICAIIS), Mar. 2020, pp. 221–224.
[19]
N. Wang, L. Jiao, P. Wang, M. Dabaghchian, and K. Zeng, “Efficient identity spoofing attack detection for IoT in mm-Wave and massive MIMO 5G communication,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.
[20]
N. Wang, L. Jiao, P. Wang, W. Li, and K. Zeng, “Machine learning-based spoofing attack detection in mmWave 60 GHz IEEE 802.11ad networks,” in Proc. 39th IEEE Conf. Comput. Commun. (INFOCOM), Toronto, ON, Canada, Jul. 2020, pp. 2579–2588.
[21]
S. Balakrishnan, S. Gupta, A. Bhuyan, P. Wang, D. Koutsonikolas, and Z. Sun, “Physical layer identification based on spatial-temporal beam features for millimeter-wave wireless networks,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 1831–1845, 2020.
[22]
I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, “Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 870–913, 2nd Quart., 2018.
[23]
F. Wuet al., “An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment,” J. Netw. Comput. Appl., vol. 89, pp. 72–85, Jul. 2017.
[24]
A. Esfahaniet al., “A lightweight authentication mechanism for M2M communications in industrial IoT environment,” IEEE Internet Things J., vol. 6, no. 1, pp. 288–296, Feb. 2019.
[25]
C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure integration of IoT and cloud computing,” Future Gener. Comput. Syst., vol. 78, pp. 964–975, Jan. 2018.
[26]
A. Zaidi and L. Vandendorpe, “Coding schemes for relay-assisted information embedding,” IEEE Trans. Inf. Forensics Secur., vol. 4, no. 1, pp. 70–85, Mar. 2009.
[27]
M. R. Khanzadi, R. Krishnan, D. Kuylenstierna, and T. Eriksson, “Oscillator phase noise and small-scale channel fading in higher frequency bands,” in Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2014, pp. 410–415.
[28]
O. Y. Kolawole, A. K. Papazafeiropoulos, and T. Ratnarajah, “Impact of hardware impairments on mmWave MIMO systems with hybrid precoding,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Barcelona, Spain, Apr. 2018, pp. 1–6.
[29]
A. Koohian, H. Mehrpouyan, A. A. Nasir, and S. Durrani, “Joint channel and phase noise estimation for mmWave full-duplex communication systems,” EURASIP J. Adv. Signal Process., vol. 2019, no. 1, p. 18, Dec. 2019.
[30]
A. Pitarokoilis, E. Björnson, and E. G. Larsson, “ML detection in phase noise impaired SIMO channels with uplink training,” IEEE Trans. Commun., vol. 64, no. 1, pp. 223–235, Jan. 2016.
[31]
H. Mehrpouyan, A. A. Nasir, S. D. Blostein, T. Eriksson, G. K. Karagiannidis, and T. Svensson, “Joint estimation of channel and oscillator phase noise in MIMO systems,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4790–4807, Sep. 2012.
[32]
O. H. Salim, A. A. Nasir, H. Mehrpouyan, and W. Xiang, “Multi-relay communications in the presence of phase noise and carrier frequency offsets,” IEEE Trans. Commun., vol. 65, no. 1, pp. 79–94, Jan. 2017.
[33]
A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.
[34]
R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelcic, and R. W. Heath, “Channel estimation and hybrid combining for mmWave: Phase shifters or switches?” in Proc. Inf. Theory Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2015, pp. 90–97.
[35]
J. Singh and S. Ramakrishna, “On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2670–2683, May 2015.
[36]
D. Fanet al., “Angle domain channel estimation in hybrid millimeter wave massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8165–8179, Dec. 2018.
[37]
O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[38]
W. Shen, L. Dai, B. Shim, Z. Wang, and R. W. Heath, “Channel feedback based on AoD-adaptive subspace codebook in FDD massive MIMO systems,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5235–5248, Nov. 2018.
[39]
N. Xie and S. Zhang, “Blind authentication at the physical layer under time-varying fading channels,” IEEE J. Sel. Areas Commun., vol. 36, no. 7, pp. 1465–1479, Jul. 2018.
[40]
M. Medard, “The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 933–946, May 2000.
[41]
V. Boljanovic, H. Yan, and D. Cabric, “Tracking sparse mmWave channel under time varying multipath scatterers,” in Proc. 52nd Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Oct. 2018, pp. 1274–1279.
[42]
Y. Yang, S. Dang, M. Wen, S. Mumtaz, and M. Guizani, “Bayesian beamforming for mobile millimeter wave channel tracking in the presence of DOA uncertainty,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7547–7562, Dec. 2020.
[43]
Z. Wang, P. Babu, and D. P. Palomar, “Effective low-complexity optimization methods for joint phase noise and channel estimation in OFDM,” IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3247–3260, Jun. 2017.
[44]
Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5407–5424, Nov. 2007.
[45]
F. Septier, Y. Delignon, A. Menhaj-Rivenq, and C. Garnier, “Monte Carlo methods for channel, phase noise, and frequency offset estimation with unknown noise variances in OFDM systems,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3613–3626, Aug. 2008.
[46]
P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Posterior Cramer–Rao bounds for discrete-time nonlinear filtering,” IEEE Trans. Signal Process., vol. 46, no. 5, pp. 1386–1396, May 1998.
[47]
S. Kay and P. Hall, “Fundamentals of statistical signal processing, volume II: Detection theory,” Technometrics, vol. 37, no. 4, pp. 465–466, 1993.
[48]
W. Jouini, D. Le Guennec, C. Moy, and J. Palicot, “Log-normal approximation of chi-square distributions for signal processing,” in Proc. Gen. Assem. Sci. Symp. (URSI GASS), Istanbul, Turkey, 2011, pp. 1–4.
[49]
A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “Uplink performance of time-reversal MRC in massive MIMO systems subject to phase noise,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 711–723, Feb. 2015.
[50]
L. Xiao, L. Greenstein, N. Mandayam, and W. Trappe, “Using the physical layer for wireless authentication in time-variant channels,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2571–2579, Jul. 2008.
[51]
P. Baracca, N. Laurenti, and S. Tomasin, “Physical layer authentication over MIMO fading wiretap channels,” IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2564–2573, Jul. 2012.
[52]
R. Bansal, S. Tiwari, and D. Bansal, “Non-cryptographic methods of MAC spoof detection in wireless LAN,” in Proc. 16th IEEE Int. Conf. Netw., New Delhi, India, Dec. 2008, pp. 1–6.

Cited By

View all
  • (2025)A Comprehensive Survey on Physical Layer Authentication Techniques: Categorization and Analysis of Model-Driven and Data-Driven ApproachesACM Computing Surveys10.1145/370849657:5(1-35)Online publication date: 9-Jan-2025
  • (2025)Online Two-Stage Channel-Based Lightweight Authentication Method for Time-Varying ScenariosIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.351657520(781-795)Online publication date: 1-Jan-2025
  • (2024)Robust Tracking-Based PHY-Authentication in mmWave MIMO SystemsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.348836219(10375-10386)Online publication date: 1-Jan-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security  Volume 18, Issue
2023
4507 pages

Publisher

IEEE Press

Publication History

Published: 01 January 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)A Comprehensive Survey on Physical Layer Authentication Techniques: Categorization and Analysis of Model-Driven and Data-Driven ApproachesACM Computing Surveys10.1145/370849657:5(1-35)Online publication date: 9-Jan-2025
  • (2025)Online Two-Stage Channel-Based Lightweight Authentication Method for Time-Varying ScenariosIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.351657520(781-795)Online publication date: 1-Jan-2025
  • (2024)Robust Tracking-Based PHY-Authentication in mmWave MIMO SystemsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.348836219(10375-10386)Online publication date: 1-Jan-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media