Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Succinct Quantum Testers for Closeness and <italic>k</italic>-Wise Uniformity of Probability Distributions

Published: 25 April 2024 Publication History

Abstract

We explore potential quantum speedups for the fundamental problem of testing the properties of closeness and k-wise uniformity of probability distributions: 1) Closeness testing is the problem of distinguishing whether two n-dimensional distributions are identical or at least <inline-formula> <tex-math notation="LaTeX">$\varepsilon $ </tex-math></inline-formula>-far in <inline-formula> <tex-math notation="LaTeX">$\ell ^{1}$ </tex-math></inline-formula>- or <inline-formula> <tex-math notation="LaTeX">$\ell ^{2}$ </tex-math></inline-formula>-distance. We show that the quantum query complexities for <inline-formula> <tex-math notation="LaTeX">$\ell ^{1}$ </tex-math></inline-formula>- and <inline-formula> <tex-math notation="LaTeX">$\ell ^{2}$ </tex-math></inline-formula>-closeness testing are <inline-formula> <tex-math notation="LaTeX">$O( \sqrt {n}/\varepsilon ) $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$O( 1/\varepsilon ) $ </tex-math></inline-formula>, respectively, both of which achieve optimal dependence on <inline-formula> <tex-math notation="LaTeX">$\varepsilon $ </tex-math></inline-formula>, improving the prior best results of Gily&#x00E9;n and Li (2019) and 2) k-wise uniformity testing is the problem of distinguishing whether a distribution over <inline-formula> <tex-math notation="LaTeX">$\{0, 1\}^{n}$ </tex-math></inline-formula> is uniform when restricted to any k coordinates or <inline-formula> <tex-math notation="LaTeX">$\varepsilon $ </tex-math></inline-formula>-far from any such distribution. We propose the first quantum algorithm for this problem with query complexity <inline-formula> <tex-math notation="LaTeX">$O( \sqrt {n^{k}}/\varepsilon ) $ </tex-math></inline-formula>, achieving a quadratic speedup over the state-of-the-art classical algorithm with sample complexity <inline-formula> <tex-math notation="LaTeX">$O( n^{k}/\varepsilon ^{2}) $ </tex-math></inline-formula> by O&#x2019;Donnell and Zhao (2018). Moreover, when <inline-formula> <tex-math notation="LaTeX">$k = 2$ </tex-math></inline-formula> our quantum algorithm outperforms any classical one because of the classical lower bound <inline-formula> <tex-math notation="LaTeX">$\Omega ( n/\varepsilon ^{2}) $ </tex-math></inline-formula>. All our quantum algorithms are fairly simple and time-efficient, using only basic quantum subroutines such as amplitude estimation.

References

[1]
A. Montanaro, “Quantum algorithms: An overview,” npj Quant. Inf., vol. 2, no. 1, pp. 1–8, 2016.
[2]
S. Zhang and L. Li, “A brief introduction to quantum algorithms,” CCF Trans. High Perform. Comput., vol. 4, no. 1, pp. 53–62, Mar. 2022.
[3]
A. Montanaro and R. de Wolf, “A survey of quantum property testing,” in Theory of Computing Library (Graduate Surveys), no. 7. Chicago, IL, USA: Univ. of Chicago, 2016, pp. 1–81.
[4]
S. Bravyi, A. W. Harrow, and A. Hassidim, “Quantum algorithms for testing properties of distributions,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3971–3981, Jun. 2011.
[5]
A. Montanaro, “Quantum speedup of Monte Carlo methods,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 471, no. 2181, Sep. 2015, Art. no.
[6]
A. Gilyén and T. Li, “Distributional property testing in a quantum world,” in Proc. 11th Innov. Theor. Comput. Sci. Conf., vol. 151, 2020, pp. 1–19.
[7]
T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, “Testing that distributions are close,” in Proc. 41st Annu. Symp. Found. Comput. Sci. (FOCS), 2000, pp. 259–269.
[8]
I. Diakonikolas and D. M. Kane, “A new approach for testing properties of discrete distributions,” in Proc. IEEE 57th Annu. Symp. Found. Comput. Sci. (FOCS), Oct. 2016, pp. 685–694.
[9]
G. Valiant and P. Valiant, “An automatic inequality prover and instance optimal identity testing,” SIAM J. Comput., vol. 46, no. 1, pp. 429–455, Jan. 2017.
[10]
S.-O. Chan, I. Diakonikolas, P. Valiant, and G. Valiant, “Optimal algorithms for testing closeness of discrete distributions,” in Proc. 25th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), Jan. 2014, pp. 1193–1203.
[11]
C. R. Rao, “Factorial experiments derivable from combinatorial arrangements of arrays,” J. Roy. Stat. Soc. Ser. B, Stat. Methodol., vol. 9, no. 1, pp. 128–139, Jan. 1947.
[12]
N. Alon, L. Babai, and A. Itai, “A fast and simple randomized parallel algorithm for the maximal independent set problem,” J. Algorithms, vol. 7, no. 4, pp. 567–583, Dec. 1986.
[13]
B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, and R. Smolensky, “The bit extraction problem or t-resilient functions,” in Proc. 26th Annu. Symp. Found. Comput. Sci., 1985, pp. 396–407.
[14]
A. Ambainis, “Quantum walk algorithm for element distinctness,” SIAM J. Comput., vol. 37, no. 1, pp. 210–239, Jan. 2007.
[15]
Y. Hamoudi and F. Magniez, “Quantum Chebyshev’s inequality and applications,” in Proc. 46th Int. Colloq. Automata, Lang., Program., vol. 132, 2019, pp. 1–16.
[16]
A. Belovs, “Quantum algorithms for classical probability distributions,” in Proc. 27th Annu. Eur. Symp. Algorithms, vol. 144, 2019, pp. 1–11.
[17]
X. Wang, S. Zhang, and T. Li, “A quantum algorithm framework for discrete probability distributions with applications to Rényi entropy estimation,” IEEE Trans. Inf. Theory, vol. 70, no. 5, pp. 3399–3426, May 2024.
[18]
G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” Contemp. Math., vol. 305, pp. 53–74, Oct. 2002.
[19]
S. Arunachalam and R. de Wolf, “Optimal quantum sample complexity of learning algorithms,” J. Mach. Learn. Res., vol. 19, no. 71, pp. 1–36, 2018.
[20]
D. Aharonov and A. Ta-Shma, “Adiabatic quantum state generation,” SIAM J. Comput., vol. 37, no. 1, pp. 47–82, Jan. 2007.
[21]
A. Atici and R. A. Servedio, “Improved bounds on quantum learning algorithms,” Quantum Inf. Process., vol. 4, no. 5, pp. 355–386, Nov. 2005.
[22]
N. H. Bshouty and J. C. Jackson, “Learning DNF over the uniform distribution using a quantum example Oracle,” in Proc. 8th Annu. Conf. Comput. Learn. Theory, 1995, pp. 118–127.
[23]
S. Chakraborty, E. Fischer, A. Matsliah, and R. de Wolf, “New results on quantum property testing,” in Proc. IARCS Annu. Conf. Found. Softw. Technol. Theor. Comput. Sci., vol. 8, 2010, pp. 145–156.
[24]
T. Li and X. Wu, “Quantum query complexity of entropy estimation,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2899–2921, May 2019.
[25]
A. Montanaro, “The quantum complexity of approximating the frequency moments,” Quantum Inf. Comput., vol. 16, pp. 1169–1190, Oct. 2016.
[26]
A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics,” in Proc. 51st Annu. ACM SIGACT Symp. Theory Comput., Jun. 2019, pp. 193–204.
[27]
R. O’Donnell and Y. Zhao, “On closeness to k-wise uniformity,” in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Leibniz International Proceedings in Informatics), vol. 116. Dagstuhl, Germany: Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2018, pp. 54:1–54:19.
[28]
N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie, “Testing k-wise and almost k-wise independence,” in Proc. 39th Annu. ACM Symp. Theory Comput. New York, NY, USA: Association for Computing Machinery, Jun. 2007, pp. 496–505.
[29]
S. Aaronson and Y. Shi, “Quantum lower bounds for the collision and the element distinctness problems,” J. ACM, vol. 51, no. 4, pp. 595–605, Jul. 2004.
[30]
A. Ambainis, “Polynomial degree and lower bounds in quantum complexity: Collision and element distinctness with small range,” Theory Comput., vol. 1, no. 3, pp. 37–46, May 2005.
[31]
S. Kutin, “Quantum lower bound for the collision problem with small range,” Theory Comput., vol. 1, no. 1, pp. 29–36, 2005.
[32]
T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, “Testing closeness of discrete distributions,” J. ACM, vol. 60, no. 1, pp. 1–25, Feb. 2013.
[33]
R. Rubinfeld, “Taming big probability distributions,” XRDS, Crossroads, ACM Mag. Students, vol. 19, no. 1, pp. 24–28, 2012.
[34]
C. L. Canonne, “A survey on distribution testing: Your data is big. But is it blue?” in Theory of Computing Library (Graduate Surveys), no. 9. Chicago, IL, USA: Univ. of Chicago, 2020, pp. 1–100.
[35]
N. Alon, O. Goldreich, and Y. Mansour, “Almost k-wise independence versus k-wise independence,” Inf. Process. Lett., vol. 88, no. 3, pp. 107–110, Nov. 2003.
[36]
C. Bădescu, R. O’Donnell, and J. Wright, “Quantum state certification,” in Proc. 51st Annu. ACM SIGACT Symp. Theory Comput. Association for Computing Machinery, 2019, pp. 503–514.
[37]
Q. Wang et al., “Quantum algorithm for fidelity estimation,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 273–282, Jan. 2023.
[38]
Q. Wang, J. Guan, J. Liu, Z. Zhang, and M. Ying, “New quantum algorithms for computing quantum entropies and distances,” IEEE Trans. Inf. Theory, 2024.
[39]
A. Gilyén and A. Poremba, “Improved quantum algorithms for fidelity estimation,” 2022, arXiv:2203.15993.
[40]
Q. Wang and Z. Zhang, “Fast quantum algorithms for trace distance estimation,” IEEE Trans. Inf. Theory, vol. 70, no. 4, pp. 2720–2733, Apr. 2024.
[41]
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett., vol. 114, no. 9, Mar. 2015, Art. no.
[42]
A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput., vol. 12, nos. 11–12, pp. 901–924, Nov. 2012.
[43]
R. O’Donnell, Analysis of Boolean Functions. Cambridge, U.K.: Cambridge Univ. Press, 2014.
[44]
T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational determination of multiqubit entanglement classes via tuning of local operations,” Phys. Rev. Lett., vol. 102, no. 5, Feb. 2009, Art. no.
[45]
A. Bärtschi and S. Eidenbenz, “Deterministic preparation of Dicke states,” in Proc. 22nd Int. Symp. Fund. Comput. Theory. Cham, Switzerland: Springer, 2019, pp. 126–139.
[46]
J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018.
[47]
R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, “Quantum lower bounds by polynomials,” J. ACM, vol. 48, no. 4, pp. 778–797, Jul. 2001.
[48]
R. Paturi, “On the degree of polynomials that approximate symmetric Boolean functions (preliminary version),” in Proc. 24th Annu. ACM Symp. Theory Comput., 1992, pp. 468–474.

Cited By

View all
  • (2024)Optimal Trace Distance and Fidelity Estimations for Pure Quantum StatesIEEE Transactions on Information Theory10.1109/TIT.2024.344791570:12(8791-8805)Online publication date: 22-Aug-2024
  • (2024)New Quantum Algorithms for Computing Quantum Entropies and DistancesIEEE Transactions on Information Theory10.1109/TIT.2024.339901470:8(5653-5680)Online publication date: 1-Aug-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Theory
IEEE Transactions on Information Theory  Volume 70, Issue 7
July 2024
828 pages

Publisher

IEEE Press

Publication History

Published: 25 April 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Optimal Trace Distance and Fidelity Estimations for Pure Quantum StatesIEEE Transactions on Information Theory10.1109/TIT.2024.344791570:12(8791-8805)Online publication date: 22-Aug-2024
  • (2024)New Quantum Algorithms for Computing Quantum Entropies and DistancesIEEE Transactions on Information Theory10.1109/TIT.2024.339901470:8(5653-5680)Online publication date: 1-Aug-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media