Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Role Discovery in Networks

Published: 01 April 2015 Publication History

Abstract

Roles represent node-level connectivity patterns such as star-center, star-edge nodes, near-cliques or nodes that act as bridges to different regions of the graph. Intuitively, two nodes belong to the same role if they are structurally similar. Roles have been mainly of interest to sociologists, but more recently, roles have become increasingly useful in other domains. Traditionally, the notion of roles were defined based on graph equivalences such as structural, regular, and stochastic equivalences. We briefly revisit these early notions and instead propose a more general formulation of roles based on the similarity of a feature representation (in contrast to the graph representation). This leads us to propose a taxonomy of three general classes of techniques for discovering roles that includes (i) graph-based roles, (ii) feature-based roles, and (iii) hybrid roles. We also propose a flexible framework for discovering roles using the notion of similarity on a feature-based representation. The framework consists of two fundamental components: (a) role feature construction and (b) role assignment using the learned feature representation. We discuss the different possibilities for discovering feature-based roles and the tradeoffs of the many techniques for computing them. Finally, we discuss potential applications and future directions and challenges.

References

[1]
T. Parsons, “Illness and the role of the physician: A sociological perspective, ” Amer. J. Orthopsychiatry., vol. 21, no. 3, pp. 452–460, 1951.
[2]
R. Merton, Social Theory and Social Structure. New York, NY, USA : Simon & Schuster, 1968.
[3]
S. Borgatti, M. Everett, and J. Johnson, Analyzing Social Networks. Newbury Park, CA, USA: Sage, 2013.
[4]
F. Lorrain and H. White, “Structural equivalence of individuals in social networks,” J. Math. Soc., vol. 1, no. 1, pp. 49–80, 1971.
[5]
P. Holland, K. Blackmond, and S. Leinhardt, “ Stochastic blockmodels: First steps,” Soc. Netw., vol. 5, pp. 109–137, 1983.
[6]
P. Arabie, S. Boorman, and P. Levitt, “ Constructing blockmodels: How and why,” J. Math. Psych., vol. 17, no. 1, pp. 21–63, 1978.
[7]
C. Anderson, S. Wasserman, and K. Faust, “Building stochastic blockmodels,” Soc. Netw., vol. 14, no. 1, pp. 137–161, 1992.
[8]
V. Batagelj, A. Mrvar, A. Ferligoj, and P. Doreian, “Generalized blockmodeling with pajek,” Metodoloski Zvezki, vol. 1, pp. 455– 467, 2004.
[9]
P. Doreian, V. Batagelj, and A. Ferligoj, Generalized Blockmodeling, vol. 25. Cambridge, U.K.: Cambridge Univ. Press, 2005.
[10]
K. Nowicki and T. Snijders, “Estimation and prediction for stochastic blockstructures,” J. Amer. Stat. Assoc., vol. 96, no. 455, pp. 1077– 1087, 2001.
[11]
J. Scripps, P. Tan, and A. Esfahanian, “Node roles and community structure in networks,” in Proc. 9th WebKDD 1st SNA-KDD Workshop Web Mining Social Netw. Anal., 2007, pp. 26–35.
[12]
P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, A. Vahdat, et al., “The internet as-level topology: Three data sources and one definitive metric,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 17–26, 2006.
[13]
R. A. Rossi, S. Fahmy, and N. Talukder, “A multi-level approach for evaluating internet topology generators,” in Proc. IFIP Netw. Conf., 2013, pp. 1–9.
[14]
A. Varki, “Biological roles of oligosaccharides: All of the theories are correct,” Glycobiology, vol. 3, no. 2, pp. 97–130, 1993.
[15]
J. Luczkovich, S. Borgatti, J. Johnson, and M. Everett, “Defining and measuring trophic role similarity in food webs using regular equivalence,” J. Theor. Bio., vol. 220, no. 3, pp. 303–321, 2003.
[16]
H. Ma, I. King, and M. R. Lyu, “Mining web graphs for recommendations,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6, pp. 1051–1064, Jun. 2012.
[17]
S. Golder and J. Donath, “Social roles in electronic communities,” Internet Res., vol. 5, pp. 19–22, 2004.
[18]
R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling dynamic behavior in large evolving graphs,” in Proc. 6th ACM Int. Conf. Web Search Data Mining, 2013, pp. 667–676.
[19]
A. Farahat, N. K. Ahmed, and U. Dholakia, “Does a daily deal promotion signal a distressed business? an empirical investigation of small business survival,” in Proc. Economics Web Search Social Netw., 2013, pp. 1 –8.
[20]
A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very large networks,” Phy. Rev. E, vol. 70, no. 6, p. 066111, 2004.
[21]
J. Chen and Y. Saad, “Dense subgraph extraction with application to community detection,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 7, pp. 1216 –1230, Jul. 2012.
[22]
L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in large social networks: Membership, growth, and evolution,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2006, pp. 44–54.
[23]
D. Chakrabarti, R. Kumar, and A. Tomkins, “ Evolutionary clustering,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining , 2006, pp. 554–560.
[24]
B. Yang, J. Liu, and J. Feng, “On the spectral characterization and scalable mining of network communities,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 2, pp. 326–337, Feb. 2012.
[25]
M. Newman, “Fast algorithm for detecting community structure in networks, ” Phys. Rev. E, vol. 69, no. 6, p. 066133, 2004.
[26]
D. White and K. Reitz, “Graph and semigroup homomorphisms on networks of relations,” Soc. Netw., vol. 5, no. 2, pp. 193–234, 1983.
[27]
P. Holland, and S. Leinhardt, “An exponential family of probability distributions for directed graphs,” J. Amer. Stat. Assoc., pp. 33–50, 1981.
[28]
E. Xing, W. Fu, and L. Song, “A state-space mixed membership blockmodel for dynamic network tomography,” Ann. Appl. Stat., vol. 4, no. 2, pp. 535–566, 2010.
[29]
L. McDowell, K. Gupta, and D. Aha, “Cautious collective classification,” J. Mach. Learn. Res., vol. 10, pp. 2777–2836, 2009.
[30]
J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning relational probability trees,” in Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2003, pp. 625–630.
[31]
A. McGovern, N. Collier, I. Matthew Gagne, D. Brown, and A. Rodger, “Spatiotemporal relational probability trees: An introduction,” in Proc. 8th Int. Conf. Data Mining, 2008, pp. 935 –940.
[32]
E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership stochastic blockmodels,” J. Mach. Learn. Res., vol. 9, pp. 1981 –2014, 2008.
[33]
R. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Role-dynamics: Fast mining of large dynamic networks,” in Proc. 21st Int. Conf. Companion World Wide Web, 2012, pp. 997–1006.
[34]
I. Bhattacharya and L. Getoor, “Collective entity resolution in relational data,” ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, pp. 1–36, 2007.
[35]
S. J. Pan and Q. Yang, “A survey on transfer learning,” ACM Trans. Knowl. Discov. Data Mining, vol. 22, no. 10, p. 1345, 2010.
[36]
K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra, and L. Li, “Rolx: Structural role extraction & mining in large graphs,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2012, pp. 1231–1239.
[37]
M. Bilgic, L. Mihalkova, and L. Getoor, “Active learning for networked data,” in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 79–86.
[38]
T. Tassa and D. J. Cohen, “Anonymization of centralized and distributed social networks by sequential clustering, ” ACM Trans. Knowl. Discov. Data Eng, vol. 25, no. 2, pp. 311–324, 2013.
[39]
N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From static to streaming graphs,” ACM Trans. Knowl. Discov. Data, vol. 8, pp. 1–45, 2013.
[40]
D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolutionary Comput., vol. 1, no. 1, pp. 67– 82, Apr. 1997.
[41]
D. H. Wolpert, “The lack of a priori distinctions between learning algorithms, ” Neural Comput., vol. 8, no. 7, pp. 1341 –1390, 1996.
[42]
D. H. Wolpert, “The supervised learning no-free-lunch theorems, ” in Soft Computing and Industry. London, U.K.: Springer, 2002, pp. 25–42.
[43]
H. Xu, C. Caramanis, and S. Mannor, “Sparse algorithms are not stable: A no-free-lunch theorem,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1, pp. 187–193, Sep. 2012.
[44]
C. Goutte, “Note on free lunches and cross-validation,” Neural Comput., vol. 9, no. 6, pp. 1245– 1249, 1997.
[45]
A. Goldenberg, A. Zheng, and S. Fienberg, A Survey of Statistical Network Models. Delft, The Netherlands: Now Publishers, 2010.
[46]
K. Nowicki and T. Snijders, “Estimation and prediction for stochastic blockstructures,” J. Amer. Stat. Assoc., vol. 96, pp. 1077–1087, 2001.
[47]
M. Richardson and P. Domingos, “Markov logic networks,” Mach. Learn., vol. 62, nos. 1/2, pp. 107–136, 2006.
[48]
S. Riedel and I. Meza-Ruiz, “Collective semantic role labelling with markov logic,” in Proc. 12th Conf. Comput. Natural Lang. Learn., 2008, pp. 193–197.
[49]
W. Fu, L. Song, and E. Xing, “Dynamic mixed membership blockmodel for evolving networks,” in Proc. Int. Conf. Mach. Learn., 2009, pp. 329–336.
[50]
M. Everett, “Role similarity and complexity in social networks, ” Soc. Netw., vol. 7, no. 4, pp. 353– 359, 1985.
[51]
L. Sailer, “Structural equivalence: Meaning and definition, computation and application,” Soc. Netw., vol. 1, no. 1, pp. 73–90, 1979.
[52]
M. Everett, J. Boyd, and S. Borgatti, “ Ego-centered and local roles: A graph theoretic approach,” J. Math. Soc., vol. 15, no. 3–4, pp. 163–172, 1990.
[53]
J. Boyd and M. Everett, “Relations, residuals, regular interiors, and relative regular equivalence, ” Soc. Netw., vol. 21, no. 2, pp. 147– 165, 1999.
[54]
P. Doreian, V. Batagelj, and A. Ferligoj, “ Generalized blockmodeling of two-mode network data,” Soc. Netw., vol. 26, no. 1, pp. 29–53, 2004.
[55]
R. Breiger, S. Boorman, and P. Arabie, “An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling,” J. Math. Psychol., vol. 12, no. 3, pp. 328–383, 1975.
[56]
V. Batagelj, A. Ferligoj, and P. Doreian, “Direct and indirect methods for structural equivalence,” Soc. Netw., vol. 14, no. 1–2, pp. 63–90, 1992.
[57]
P. Doreian, V. Batagelj, and A. Ferligoj, “ Generalized blockmodeling of two-mode network data,” Soc. Netw., vol. 26, no. 1, pp. 29–53, 2004.
[58]
V. Batagelj, A. Ferligoj, and P. Doreian, “Indirect blockmodeling of 3-way networks,” in Selected Contributions in Data Analysis Classification. New York, NY, USA: Springer, 2007, pp. 151–159.
[59]
P. Lazarsfeld and N. Henry, Latent Structure Analysis. Boston, MA, USA: Houghton Mifflin, 1968.
[60]
E. Erosheva and S. Fienberg, “Bayesian mixed membership models for soft clustering and classification,” in Classification-The Ubiquitous Challenge. New York, NY, USA: Springer, 2005, pp. 11–26.
[61]
P. Hoff, A. Raftery, and M. Handcock, “Latent space approaches to social network analysis,” J. Amer. Stat. Assoc., vol. 97, no. 460, pp. 1090–1098, 2002.
[62]
R. Burt, “Positions in networks,” Soc. Forces , vol. 55, no. 1, pp. 93–122, 1976.
[63]
J. B. Kruskal, “Nonmetric multidimensional scaling: A numerical method, ” Psychometrika, vol. 29, no. 2, pp. 115 –129, 1964.
[64]
U. Brandes and J. Lerner, “Structural similarity: Spectral methods for relaxed blockmodeling,” J. Classification, vol. 27, pp. 279–306, 2010.
[65]
J. M. Kleinberg, “Authoritative sources in a hyperlinked environment, ” J. ACM, vol. 46, no. 5, pp. 604– 632, 1999.
[66]
H. Tong, S. Papadimitriou, C. Faloutsos, S. Y. Philip, andT. Eliassi-Rad, “Gateway finder in large graphs: Problem definitions and fast solutions,” Inf. Retrieval, vol. 15, nos. 3/4, pp. 391–411, 2012.
[67]
D. Jiang and J. Pei, “Mining frequent cross-graph quasi-cliques,” ACM Trans. Knowl. Discov. Data, vol. 2, no. 4, p. 16, 2009.
[68]
G. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numerische Math., vol. 14, no. 5, pp. 403–420, 1970.
[69]
F. Chung, Spectral Graph Theory. Providence, RI, USA : Amer. Math. Soc., 1997, no. 92.
[70]
M. Everett and S. Borgatti, “Regular equivalence: General theory,” J. Math. Soc., vol. 19, no. 1, pp. 29–52, 1994.
[71]
K. Miller, T. Griffiths, and M. Jordan, “ Nonparametric latent feature models for link prediction,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1276–1284.
[72]
T. L. Griffiths and Z. Ghahramani, “Infinite latent feature models and the indian buffet process,” in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 475–482.
[73]
D. Navarro and T. Griffiths, “Latent features in similarity judgments: A nonparametric Bayesian approach, ” Neural Comput., vol. 20, no. 11, pp. 2597 –2628, 2008.
[74]
Z. Ghahramani, T. Griffiths, and P. Sollich, “Bayesian nonparametric latent feature models,” Bayesian Stat., pp. 201 –225, 2007.
[75]
F. Doshi-Velez and Z. Ghahramani, “Correlated non-parametric latent feature models,” in Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 143–150.
[76]
V. Batagelj, “Similarity measures between structured objects,” Studies Phys. Theor. Chemistry, vol. 63, pp. 25– 39, 1989.
[77]
R. S. Burt, M. J. Minor, and R. D. Alba, Applied Network Analysis: A Methodological Introduction. Beverly Hills, CA, USA: Sage, 1983.
[78]
D. D. Lee and and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, pp. 788–791, 1999.
[79]
H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automatic Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.
[80]
R. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling temporal behavior in large networks: A dynamic mixed-membership model,” Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. LLNL-TR-514271, 2011.
[81]
A. McDaid, B. Murphy, N. Friel, and N. Hurley, “Model-based clustering in networks with stochastic community finding,” in COMPSTAT, 2012.
[82]
J. Davis, E. Burnside, I. Castro Dutra, D. Page, and V. Costa, “An integrated approach to learning Bayesian networks of rules,” in Proc. 16th Eur. Conf. Mach. Learn, 2005, pp. 84 –95.
[83]
N. Landwehr, K. Kersting, and L. De Raedt, “nFOIL: Integrating naıve bayes and FOIL,” in Proc. 7th Innovative Appl. Artif. Intell. Conf., 2005, pp. 275–282.
[84]
R. Rossi and J. Neville, “Time-evolving relational classification and ensemble methods,” in Proc. 16th Pacific-Asia Conf. Adv. Knowl. Discov. Data Mining, 2012, pp. 1– 13.
[85]
L. De Lathauwer, “A survey of tensor methods,” in Proc. IEEE Int. Symp. Circuits Syst, 2009, pp. 2773–2776.
[86]
M. P. Friedlander and K. Hatz, “Computing non-negative tensor factorizations,” Optim. Methods Softw., vol. 23, pp. 631–647, 2008.
[87]
Y. K. Yılmaz and A. T. Cemgil, “Probabilistic latent tensor factorization,” in Proc. Latent Variable Anal. Signal Separation, 2010, pp. 346–353.
[88]
A. Cichocki, M. Mørup, P. Smaragdis, W. Wang, and R. Zdunek, “Advances in nonnegative matrix and tensor factorization,” Comput. Intell. Neurosci., vol. 2008, p. 1, 2008.
[89]
Y.-D. Kim and S. Choi, “Nonnegative tucker decomposition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.
[90]
H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: Social recommendation using probabilistic matrix factorization,” in Proc. 17th ACM Conf. Inf. knowl. Manage., 2008, pp. 931–940.
[91]
G. Bouchard, D. Yin, and S. Guo, “Convex collective matrix factorization,” in Proc. 16th Int. Conf. Artif. Intell. Statist. , 2013, pp. 144–152.
[92]
A. P. Singh and G. J. Gordon, “Relational learning via collective matrix factorization,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2008, pp. 650– 658.
[93]
M. Rahman, M. Bhuiyan, and M. A. Hasan, “Graft: An approximate graphlet counting algorithm for large graph analysis,” in Proc. 17th ACM Conf. Inf. knowl. Manage., 2012, pp. 1467–1471.
[94]
L. A. Breslow and D. W. Aha, “Simplifying decision trees: A survey,” Knowl. Eng. Rev., vol. 12, no. 1, pp. 1–40, 1997.
[95]
J. Neville and D. Jensen, “Iterative classification in relational data,” in Proc. Learn. Statist. Models Relational Data Workshop, 2000, pp. 42–49.
[96]
R. Kohavi and G. John, “Wrappers for feature subset selection,” Artif. Intell., vol. 97, nos. 1/2, pp. 273–324, 1997.
[97]
G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction to exponential random graph (p*) models for social networks,” Soc. Netw., vol. 29, pp. 173–191, 2007.
[98]
I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.
[99]
S. Milojević, “Power law distributions in information science: Making the case for logarithmic binning,” J. Amer. Soc. Inf. Sci. Technol., vol. 61, no. 12, pp. 2417–2425, 2010.
[100]
R. A. Rossi, L. K. McDowell, D. W. Aha, and J. Neville, “Transforming graph data for statistical relational learning,” J. Artif. Intell. Res., vol. 45, pp. 363–441, 2012.
[101]
M. Steyvers and T. Griffiths, “Probabilistic topic models,” Handbook Latent Semantic Anal. , vol. 427, no. 7, pp. 424–440, 2007.
[102]
Q. Lu and L. Getoor, “ Link-based classification,” in Proc. Int. Conf. Mach. Learn., 2003, pp. 496–503.
[103]
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimensionality reduction in recommender system–A case study,” in Proc. ACM WebKDD Web Mining E-Commerce Workshop, 2000, pp. 1–14.
[104]
I. Fodor, “A survey of dimension reduction techniques,” US DOE Office Sci. Tech. Inf., vol. 18, pp. 1–18, 2002.
[105]
S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data: A comparative evaluation,” in Proc. SIAM Data Mining Conf., 2008, pp. 243–254.
[106]
D. Lin, “An information-theoretic definition of similarity,” in Proc. Int. Conf. Mach. Learn., 1998, pp. 296–304.
[107]
R. Lichtenwalter, J. Lussier, and N. Chawla, “New perspectives and methods in link prediction,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2010, pp. 243–252.
[108]
J. Chang and D. Blei, “Relational topic models for document networks,” in Proc. 16th Int. Conf. Artif. Intell. Statist., 2009, pp. 81–88.
[109]
R. Rossi and J. Neville, “Modeling the evolution of discussion topics and communication to improve relational classification,” in Proc. 1st Workshop Social Media Anal., 2010, pp. 1–10.
[110]
S.-H. Cha, “Comprehensive survey on distance/similarity measures between probability density functions,” M3Int. J. Math. Models Methods Appl. Sci., vol. 1, pp. 300–307, 2007.
[111]
Y. Yao, “Information-theoretic measures for knowledge discovery and data mining, ” in Proc. Entropy Meas., Maximum Entropy Principle Emerging Appl., 2003, pp. 115–136.
[112]
C. Aggarwal, Y. Zhao, and P. Yu, “On the use of side information for mining text data,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 6, pp. 1415–1429, Jun. 2014.
[113]
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature Extraction-Foundations Applications. New York, NY. USA: Springer, 2006.
[114]
M. Kearns, Y. Mansour, and A. Y. Ng, “An information-theoretic analysis of hard and soft assignment methods for clustering,” in Proc. NATO Adv. Study Institute Learn. Graph. Model., 1998, pp. 495– 520.
[115]
D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel associations in large data sets,” Science, vol. 334, no. 6062, pp. 1518–1524, 2011.
[116]
C. Mallows, “Some comments on Cp,” Technometrics , vol. 42, no. 1, pp. 87–94, 1973.
[117]
E. Hannan and B. Quinn, “The determination of the order of an autoregression,” J. Royal Stat. Soc.: Ser. B, vol. 41, pp. 190–195, 1979.
[118]
G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6, no. 2, pp. 461–464, 1978.
[119]
J. Shao, “Bootstrap model selection,” J. Amer. Stat. Assoc., vol. 91, no. 434, pp. 655–665, 1996.
[120]
E. George and R. McCulloch, “Variable selection via Gibbs sampling,” J. Amer. Stat. Assoc. , vol. 88, pp. 881–889, 1993.
[121]
S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik, “Gradient-based boosting for statistical relational learning: The relational dependency network case,” Mach. Learn., vol. 86, pp. 25–56, 2012.
[122]
T. Khot, S. Natarajan, K. Kersting, and J. Shavlik, “Learning markov logic networks via functional gradient boosting,” in Proc. 11th Int. Conf. Data Mining, 2011, pp. 320–329.
[123]
K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, and C. Faloutsos, “It’s who you know: Graph mining using recursive structural features,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2011, pp. 1–10.
[124]
J. Davis, I. Ong, J. Struyf, E. Burnside, D. Page, and V. S. Costa, “Change of representation for statistical relational learning,” in Proc. 20th Int. Joint Conf. Artif. Intell., 2007, pp. 2719–2725.
[125]
T. Huynh and R. Mooney, “Discriminative structure and parameter learning for markov logic networks,” in Proc. Int. Conf. Mach. Learn., 2008, pp. 416–423.
[126]
L. De Raedt and I. Thon, “Probabilistic rule learning,” Inductive Logic Programm., vol. 6489, pp. 47–58, 2010.
[127]
N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi, “Fast learning of relational kernels, ” Mach. Learn., vol. 78, no. 3, pp.  305–342, 2010.
[128]
L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning probabilistic models of relational structure,” in Proc. Int. Conf. Mach. Learn., 2001, pp. 170–177.
[129]
S. Kok and P. Domingos, “ Learning the structure of Markov logic networks,” in Proc. Int. Conf. Mach. Learn., 2005, pp. 441–448.
[130]
L. Mihalkova and R. Mooney, “Bottom-up learning of Markov logic network structure,” in Proc. Int. Conf. Mach. Learn., 2007, pp. 625–632.
[131]
H. Khosravi, O. Tong Man, X. Xu, and B. Bina, “Structure learning for markov logic networks with many descriptive attributes,” in Proc. Assoc. Adv. Artif. Intell., 2010, pp. 487–493.
[132]
F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: An overview,” Data Mining Knowl. Discov., vol. 2, no. 1, pp. 86–97, 2012.
[133]
P. Berkhin, “Survey of clustering data mining techniques,” Recent Adv. Clustering, vol. 10, pp. 25–71, 2006.
[134]
X. Zhu, “Semi-supervised learning literature survey,” Comput. Sci., University of Wisconsin-Madison, Madison, WI, USA, 2006.
[135]
T. Kohonen, “The self-organizing map,” Proc. IEEE , vol. 78, no. 9, pp. 1464–1480, Sep. 1990.
[136]
J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984.
[137]
C. Rasmussen, “The infinite gaussian mixture model,” Adv. Neural Inf. Process. Syst., vol. 12, no. 5.2, p. 2, 2000.
[138]
H. Abdi and L. J. Williams, “Principal component analysis,” Comput. Statist. , vol. 2, no. 4, pp. 433–459, 2010.
[139]
B. Schölkopf, A. Smola, and K. Müller, “Kernel principal component analysis,” in Proc. 7th Int. Conf. Artif. Neural Netw., 1997, pp. 583–588.
[140]
Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A comprehensive review,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1336– 1353, Jun. 2013.
[141]
M. Mahoney and P. Drineas, “Cur matrix decompositions for improved data analysis,” Proc. Nat. Acad. Sci. USA, vol. 106, pp. 697–702, 2009.
[142]
R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” Adv. Neural Inf. Process. Syst., vol. 20, pp. 1257–1264, 2008.
[143]
K.-L. Du and M. Swamy, “Independent component analysis,” in Proc. Neural Netw. Statist. Learn., 2014, pp. 419–450.
[144]
P. Comon, “Independent component analysis, a new concept? ” Signal Process., vol. 36, no. 3, pp. 287– 314, 1994.
[145]
C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,” Psychometrika, vol. 1, pp. 211–218, 1936.
[146]
C. H. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative matrix factorization and spectral clustering,” in Proc. SIAM Int. Conf. Data Mining, 2005, vol. 5, pp. 606–610.
[147]
C. Ding, T. Li, and W. Peng, “On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing, ” Comput. Stat. Data Anal, vol. 52, no. 8, pp. 3913 –3927, 2008.
[148]
M. Heiler and C. Schnörr, “Controlling sparseness in non-negative tensor factorization,” in Proc. 9th Eur. Conf. Comput. Vis., 2006, pp. 56– 67.
[149]
A. Cichocki, A. H. Phan, and C. Caiafa, “Flexible Hals algorithms for sparse non-negative matrix/tensor factorization,” in Proc. IEEE Mach. Learn. Signal Proces, 2008, pp. 73–78.
[150]
A. Cichocki, R. Zdunek, S. Choi, R. Plemmons, and S.-I. Amari, “Novel multi-layer non-negative tensor factorization with sparsity constraints,” in Proc. Adap. Nat. Comput. Alg., 2007, pp. 271–280.
[151]
S. Gilpin, T. Eliassi-Rad, and I. Davidson, “ Guided learning for role discovery (GLRD): Framework, algorithms, and applications,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2013, pp. 1 –9.
[152]
L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-n approximation of higher-order tensors,” SIAM. J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1324–1342, 2000.
[153]
D. J. Cook, L. B. Holder, and G. M. Youngblood, “ Graph-based analysis of human transfer learning using a game testbed,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 11, pp. 1465–1478, Nov. 2007.
[154]
P. D. Grünwald, The Minimum Description Length Principle.Cambridge, MA, USA: MIT Press, 2007.
[155]
J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5, pp. 465–471, 1978.
[156]
R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a data set via the gap statistic,” J. Royal Stat. Soc.: Ser. B (Stat. Meth.), vol. 63, no. 2, pp. 411–423, 2001.
[157]
D. Pelleg and A. Moore, “X-means: Extending k-means with efficient estimation of the number of clusters,” in Proc. Int. Conf. Mach. Learn., 2000, pp. 727–734.
[158]
S. Dudoit and J. Fridlyand, “A prediction-based resampling method for estimating the number of clusters in a dataset,” Genome Biol., vol. 3, no. 7, pp. 1–21, 2002.
[159]
G. Celeux and G. Soromenho, “An entropy criterion for assessing the number of clusters in a mixture model, ” J. Classification, vol. 13, no. 2, pp. 195 –212, 1996.
[160]
C. Sugar and G. James, “Finding the number of clusters in a dataset,” J. Amer. Stat. Assoc., vol. 98, no. 463, pp. 750–763, 2003.
[161]
S. Salvador and P. Chan, “Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms,” in Proc. 16th IEEE Int. Conf. Tools Artif. Intell., 2004, pp. 576–584.
[162]
S. Dray, “On the number of principal components: A test of dimensionality based on measurements of similarity between matrices,” Comput. Stat. Data Anal., vol. 52, pp. 2228–2237, 2008.
[163]
H. Eastment and W. Krzanowski, “Cross-validatory choice of the number of components from a principal component analysis,” Technometrics, vol. 24, pp. 73– 77, 1982.
[164]
D. Jackson, “Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches,” Ecology, vol. 74, pp. 2204–2214, 1993.
[165]
S. Wold, “Cross-validatory estimation of the number of components in factor and principal components models,” Technometrics, vol. 20, pp. 397–405, 1978.
[166]
C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 2008.
[167]
A. Jalali, C. C. Johnson, and P. K. Ravikumar, “ On learning discrete graphical models using greedy methods,” in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 1935–1943.
[168]
A. Cichocki and R. Zdunek, “Regularized alternating least squares algorithms for non-negative matrix/tensor factorization,” in Proc. Adv. Neural Netw., 2007, pp. 793– 802.
[169]
S. Vijayakumar, A. D’souza, and S. Schaal, “ Incremental online learning in high dimensions,” Neural Comput., vol. 17, no. 12, pp. 2602–2634, 2005.
[170]
J. Chan, S. Lam, and C. Hayes, “Increasing the scalability of the fitting of generalised block models for social networks,” in Proc. 2nd Int. Joint Conf. Artif. Intell., 2011, pp. 1218–1224 .
[171]
J. Yin, Q. Ho, and E. Xing, “A scalable approach to probabilistic latent space inference of large-scale networks,” in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 422–430.
[172]
R. Ranganath, C. Wang, B. David, and E. Xing, “An adaptive learning rate for stochastic variational inference,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 298–306.
[173]
N. Lopes and B. Ribeiro, “Non-negative matrix factorization implementation using graphic processing units, ” in Proc. 11th Int. Conf. Intell. Data Eng. Automated Learning, 2010, pp. 275–283.
[174]
H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Scalable coordinate descent approaches to parallel matrix factorization for recommender systems,” in Proc. IEEE 12th Int. Conf. Data Mining, 2012, pp. 765–774.
[175]
O. Trelles, P. Prins, M. Snir, and R. C. Jansen, “Big data, but are we ready? ” Nat. Rev. Gen., vol. 12, no. 3, pp. 224 –224, 2011.
[176]
A. McCallum, X. Wang, and A. Corrada-Emmanuel, “ Topic and role discovery in social networks with experiments on enron and academic email,” J. Artif. Intell. Res., vol. 30, pp. 249–272, 2007.
[177]
M. Danilevsky, C. Wang, N. Desai, and J. Han, “Entity role discovery in hierarchical topical communities,” in Proc. ACM SIGKDD Int. Workshop Mining Data Semantics Heterogeneous Inf. Netw., 2013, pp. 1–8.
[178]
P. Domingos, “A few useful things to know about machine learning, ” Commun. ACM, vol. 55, no. 10, pp. 78– 87, 2012.
[179]
R. Caceres, K. Carter, and J. Kun, “A boosting approach to learning graph representations,” in SDM Workshop on Mining Networks and Graphs, 2014.
[180]
Y. MarcAurelio Ranzato, L. Boureau, and Y. LeCun, “ Sparse feature learning for deep belief networks,” Adv. Neural Inf. Process. Syst. , vol. 20, pp. 1185–1192, 2007.
[181]
Y. Bengio, “Learning deep architectures for AI,” Found. Trends ML, vol. 2, no. 1, pp. 1–127, 2009.

Cited By

View all
  • (2024)The Core Might Change Anyhow We Define ItComplexity10.1155/2024/39568772024Online publication date: 1-Jan-2024
  • (2024)Topology-aware Retrieval Augmentation for Text GenerationProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679746(2442-2452)Online publication date: 21-Oct-2024
  • (2024)Role-aware random walk for network embeddingInformation Sciences: an International Journal10.1016/j.ins.2023.119765652:COnline publication date: 1-Jan-2024
  • Show More Cited By

Index Terms

  1. Role Discovery in Networks
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image IEEE Transactions on Knowledge and Data Engineering
        IEEE Transactions on Knowledge and Data Engineering  Volume 27, Issue 4
        April 2015
        274 pages

        Publisher

        IEEE Educational Activities Department

        United States

        Publication History

        Published: 01 April 2015

        Author Tags

        1. unsupervised learning
        2. Roles
        3. role discovery
        4. role learning
        5. feature-based roles
        6. structural similarity

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 31 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)The Core Might Change Anyhow We Define ItComplexity10.1155/2024/39568772024Online publication date: 1-Jan-2024
        • (2024)Topology-aware Retrieval Augmentation for Text GenerationProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679746(2442-2452)Online publication date: 21-Oct-2024
        • (2024)Role-aware random walk for network embeddingInformation Sciences: an International Journal10.1016/j.ins.2023.119765652:COnline publication date: 1-Jan-2024
        • (2024)An effective representation learning model for link prediction in heterogeneous information networksComputing10.1007/s00607-023-01238-x106:7(2185-2210)Online publication date: 1-Jul-2024
        • (2023)An optimization-based approach to node role discovery in networksProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669247(71358-71374)Online publication date: 10-Dec-2023
        • (2022)Not Only Degree Matters: Diffusion-Driven Role RecognitionProceedings of the 2022 Workshop on Open Challenges in Online Social Networks10.1145/3524010.3539497(16-24)Online publication date: 28-Jun-2022
        • (2022)Taxonomy-Enhanced Graph Neural NetworksProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557467(2270-2279)Online publication date: 17-Oct-2022
        • (2022)A survey of structural representation learning for social networksNeurocomputing10.1016/j.neucom.2022.04.128496:C(56-71)Online publication date: 28-Jul-2022
        • (2022)RED: Learning the role embedding in networks via Discrete-time quantum walkApplied Intelligence10.1007/s10489-021-02342-152:2(1493-1507)Online publication date: 1-Jan-2022
        • (2022)Self-supervised role learning for graph neural networksKnowledge and Information Systems10.1007/s10115-022-01694-564:8(2091-2121)Online publication date: 13-Jul-2022
        • Show More Cited By

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media