Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Live Migration of Video Analytics Applications in Edge Computing

Published: 20 February 2023 Publication History

Abstract

In order to schedule resources efficiently or maintain applications&#x2019; continuity for mobile customers, edge platforms often need to adaptively migrate the applications on them. However, our measurement shows that existing migration solutions cannot solve the issue of migrating video analytics applications in edge computing because the memory states of video analytics applications have different characteristics from other applications. We conduct a breakdown analysis of the memory states of video analytics applications, and propose to treat three types of states separately with three different techniques, i.e., warm-up, sync, and replay, to minimize the negative influence of migrations on application performance. Based on this idea, we implement a prototype system in which two new components, i.e., <italic>state store</italic> and <italic>sidecar</italic>, are designed to achieve near-transparent live migration with minimal application code modifications. Evaluation experiments demonstrate that the time of application interruption caused by migrating a video analytics application with our solution is less than 405 ms, and our solution does not consume much resources.

References

[1]
AWS, “Aws local zones.” Accessed: Nov. 16, 2022. [Online]. Available: https://aws.amazon.com/about-aws/global-infrastructure/localzones/
[2]
Azure, “Azure private mec.” Accessed: Nov. 16, 2022. [Online]. Available: https://docs.microsoft.com/en-us/azure/private-multi-access-edge-compute-mec/overview
[3]
G. Ananthanarayanan et al., “Real-time video analytics: The killer app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.
[4]
C.-C. Hung et al., “VideoEdge: Processing camera streams using hierarchical clusters,” in Proc. IEEE/ACM Symp. Edge Comput., 2018, pp. 115–131.
[5]
P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, and X. S. Shen, “Edge coordinated query configuration for low-latency and accurate video analytics,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4855–4864, Jul. 2020.
[6]
J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon: Scalable adaptation of video analytics,” in Proc. Conf. ACM Special Int. Group Data Commun., 2018, pp. 253–266.
[7]
H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freedman, “Live video analytics at scale with approximation and Delay-Tolerance,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementation, 2017, pp. 377–392.
[8]
C. Rong, J. H. Wang, J. Liu, J. Wang, F. Li, and X. Huang, “Scheduling massive camera streams to optimize large-scale live video analytics,” IEEE/ACM Trans. Netw., vol. 30, no. 2, pp. 867–880, Apr. 2022.
[9]
X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile deep learning framework for edge video analytics,” in Proc. IEEE Conf. Comput. Commun., 2018, pp. 1421–1429.
[10]
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Commun. Surv. Tut., vol. 19, no. 3, pp. 1657–1681, Third Quarter 2017.
[11]
C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A. Puliafito, “Container migration in the fog: A performance evaluation,” Sensors, vol. 19, no. 7, 2019, Art. no.
[12]
Z. Zhou, X. Li, X. Wang, Z. Liang, G. Sun, and G. Luo, “Hardware-assisted service live migration in resource-limited edge computing systems,” in Proc. 57th ACM/IEEE Des. Automat. Conf., 2020, pp. 1–6.
[13]
M. Bozyigit and M. Wasiq, “User-level process checkpoint and restore for migration,” ACM SIGOPS Operating Syst. Rev., vol. 35, no. 2, pp. 86–96, 2001.
[14]
C. Yang, “Checkpoint and restoration of micro-service in docker containers,” in Proc. 3rd Int. Conf. Mechatron. Ind. Informat., 2015, pp. 915–918.
[15]
S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete container state migration,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 2137–2142.
[16]
C. Prakash, D. Mishra, P. Kulkarni, and U. Bellur, “Portkey: Hypervisor-assisted container migration in nested cloud environments,” in Proc. 18th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ., 2022, pp. 3–17.
[17]
T. Xing, A. Barbalace, P. Olivier, M. L. Karaoui, W. Wang, and B. Ravindran, “H-container: Enabling heterogeneous-ISA container migration in edge computing,” ACM Trans. Comput. Syst., vol. 39, 2022, Art. no.
[18]
C. Clark et al., “Live migration of virtual machines,” in Proc. 2nd Conf. Symp. Netw. Syst. Des. Implementation, 2005, pp. 273–286.
[19]
M. Nelson et al., “Fast transparent migration for virtual machines,” in Proc. USENIX Annu. Tech. Conf., 2005, pp. 391–394.
[20]
M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnostic container migration and failover,” in Proc. IEEE 46th Conf. Local Comput. Netw., 2021, pp. 565–572.
[21]
T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling live migration of containerized applications across clouds,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 2529–2538.
[22]
H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration planning in software-defined networks,” in Proc. IEEE Conf. Comput. Commun., 2015, pp. 487–495.
[23]
M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration of virtual machines,” ACM SIGOPS Operating Syst. Rev., vol. 43, no. 3, pp. 14–26, 2009.
[24]
T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Enabling instantaneous relocation of virtual machines with a lightweight VMM extension,” in Proc. 10th IEEE/ACM Int. Conf. Cluster Cloud Grid Comput., 2010, pp. 73–83.
[25]
C. C. Chou, Y. Chen, D. Milojicic, N. Reddy, and P. Gratz, “Optimizing post-copy live migration with system-level checkpoint using fabric-attached memory,” in Proc. IEEE/ACM Workshop Memory Centric High Perform. Comput., 2019, pp. 16–24.
[26]
U. Deshpande and K. Keahey, “Traffic-sensitive live migration of virtual machines,” Future Gener. Comput. Syst., vol. 72, pp. 118–128, 2017.
[27]
U. Deshpande, D. Chan, T.-Y. Guh, J. Edouard, K. Gopalan, and N. Bila, “Agile live migration of virtual machines,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2016, pp. 1061–1070.
[28]
S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker, “Elastic scaling of stateful network functions,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Implementation, 2018, pp. 299–312.
[29]
J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and A. Akella, “Paving the way for NFV: Simplifying middlebox modifications using StateAlyzr,” in Proc. 13th USENIX Symp. Netw. Syst. Des. Implementation, 2016, pp. 239–253.
[30]
WIRED, “The prime challenges for amazon's new delivery robot.” Accessed: Nov. 16, 2022. [Online]. Available: https://www.wired.com/story/amazon-new-delivery-robot-scout/
[31]
M. Cordts et al., “The cityscapes dataset for semantic urban scene understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 3213–3223.
[32]
A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Migrating running applications across mobile edge clouds: Poster,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., 2016, pp. 435–436.
[33]
N. Mohan, L. Corneo, A. Zavodovski, S. Bayhan, W. Wong, and J. Kangasharju, “Pruning edge research with latency shears,” in Proc. 19th ACM Workshop Hot Topics Netw., 2020, pp. 182–189.
[34]
Y. Li et al., “Reducto: On-camera filtering for resource-efficient real-time video analytics,” in Proc. Annu. Conf. ACM Special Int. Group Data Commun. Appl. Technol., Architectures Protoc. Comput. Commun., 2020, pp. 359–376.
[35]
K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “MARVEL: Enabling mobile augmented reality with low energy and low latency,” in Proc. 16th ACM Conf. Embedded Netw. Sensor Syst., 2018, pp. 292–304.
[36]
T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan, “GLIMPSE: Continuous, real-time object recognition on mobile devices,” in Proc. 13th ACM Conf. Embedded Netw. Sensor Syst., 2015, pp. 155–168.
[37]
F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine migration: Challenges, techniques, and open issues,” IEEE Commun. Surv. Tuts., vol. 20, no. 2, pp. 1206–1243, Second Quarter 2018.
[38]
M. Park, K. Bhardwaj, and A. Gavrilovska, “Toward lighter containers for the edge,” in Proc. 3rd USENIX Workshop Hot Topics Edge Comput., 2020, pp. 1–7.
[39]
L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge services leveraging container layered storage,” IEEE Trans. Mobile Comput., vol. 18, no. 9, pp. 2020–2033, Sep. 2019.
[40]
X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: Scaling live video analytics with workload-adaptive distributed edge intelligence,” in Proc. 18th Conf. Embedded Netw. Sensor Syst., 2020, pp. 409–421.
[41]
N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in Proc. IEEE Int. Conf. Image Process., 2017, pp. 3645–3649.
[42]
M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 10781–10790.
[43]
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.
[44]
T. Tan and G. Cao, “FastVA: Deep learning video analytics through edge processing and NPU in mobile,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 1947–1956.
[45]
J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” 2018,.
[46]
CRIU. Accessed: Nov. 16, 2022. [Online]. Available: https://criu.org/
[47]
W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep learning,” in Proc. 13th USENIX Symp. Operating Syst. Des. Implementation, 2018, pp. 595–610.
[48]
B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee, “AWStream: Adaptive wide-area streaming analytics,” in Proc. Conf. ACM Special Int. Group Data Commun., 2018, pp. 236–252.
[49]
C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout permutation (ASLP): Towards fine-grained randomization of commodity software,” in Proc. IEEE 22nd Annu. Comput. Secur. Appl. Conf., 2006, pp. 339–348.
[50]
K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained address space layout randomization,” in Proc. IEEE Symp. Secur. Privacy, 2013, pp. 574–588.
[51]
M. Orlov, “4 reasons why your docker containers can't talk to each other.” Accessed: Nov. 16, 2022. [Online]. Available: https://maximorlov.com/4-reasons-why-your-docker-containers-cant-talk-to-each-other/
[52]
Kubernetes, “Kubernetes, production-grade container orchestration.” Accessed: Nov. 16, 2022. [Online]. Available: https://kubernetes.io/
[53]
State migration for va application. Accessed: Feb. 15, 2023. [Online]. Available: https://github.com/lolo-pop/State-Migration-for-VA-Application/
[54]
OpenCV, “How to use background subtraction methods.” Accessed: Apr. 15, 2022. [Online]. Available: https://docs.opencv.org/3.4/d1/dc5/tutorial-background-subtraction.html
[55]
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237, 2013.
[56]
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.
[57]
J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, 1987.
[58]
S. Sinha, M. J. Harrold, and G. Rothermel, “System-dependence-graph-based slicing of programs with arbitrary interprocedural control flow,” in Proc. 21st Int. Conf. Softw. Eng., 1999, pp. 432–441.
[59]
M. Das, “Unification-based pointer analysis with directional assignments,” ACM SIGPLAN Notices, vol. 35, no. 5, pp. 35–46, 2000.
[60]
E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask),” in Proc. IEEE Symp. Secur. Privacy, 2010, pp. 317–331.
[61]
W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance virtual machine migration with RDMA over modern interconnects,” in Proc. IEEE Int. Conf. Cluster Comput., 2007, pp. 11–20.
[62]
J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu, “COMMA: Coordinating the migration of multi-tier applications,” in Proc. 10th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ., 2014, pp. 153–164.
[63]
U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem, and A. Warfield, “RemusDB: Transparent high availability for database systems,” VLDB J., vol. 22, no. 1, pp. 29–45, 2013.
[64]
K. Ha et al., “You can teach elephants to dance: Agile VM handoff for edge computing,” in Proc. 2nd ACM/IEEE Symp. Edge Comput., 2017, pp. 1–14.
[65]
T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, “CloudNet: Dynamic pooling of cloud resources by live wan migration of virtual machines,” ACM SIGPLAN Notices, vol. 46, no. 7, pp. 121–132, 2011.
[66]
L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via docker container migration,” in Proc. 2nd ACM/IEEE Symp. Edge Comput., 2017, pp. 1–13.
[67]
T. Braud, A. Alhilal, and P. Hui, “Talaria: In-engine synchronisation for seamless migration of mobile edge gaming instances,” in Proc. 17th Int. Conf. Emerg. Netw. EXperiments Technol., 2021, pp. 375–381.
[68]
Z. Zhou, X. Li, and G. Sun, “Accelerate service live migration in resource-limited edge computing systems,” in Proc. 4th ACM/IEEE Symp. Edge Comput., 2019, pp. 354–355.
[69]
Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and learning algorithms for containers in fog computing,” IEEE Trans. Serv. Comput., vol. 12, no. 5, pp. 712–725, Sep./Oct. 2019.
[70]
C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, “Distributed task migration optimization in MEC by extending multi-agent deep reinforcement learning approach,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1603–1614, Jul. 2021.
[71]
Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Cloud-based enabling mechanisms for container deployment and migration at the network edge,” ACM Trans. Internet Technol., vol. 20, no. 3, pp. 1–28, 2020.
[72]
M. Sun, Z. Zhou, X. Xue, and W. Gaaloul, “Migration-based service allocation optimization in dynamic IoT networks,” in Proc. Int. Conf. Service-Oriented Comput., 2021, pp. 385–399.
[73]
S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-aware microservice coordination in mobile edge computing: A reinforcement learning approach,” IEEE Trans. Mobile Comput., vol. 20, no. 3, pp. 939–951, Mar. 2021.
[74]
ETSI, “Network functions virtualisation (NFV).” Accessed: Nov. 16, 2022. [Online]. Available: https://www.etsi.org/technologies/nfv
[75]
A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 163–174, 2014.
[76]
S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/Merge: System support for elastic execution in virtual middleboxes,” in Proc. 10th USENIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 227–240.
[77]
L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, “U-HAUL: Efficient state migration in NFV,” in Proc. 7th ACM SIGOPS Asia-Pacific Workshop Syst., 2016, pp. 1–8.
[78]
T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. Fitzek, “FAST: Flexible and low-latency state transfer in mobile edge computing,” IEEE Access, vol. 9, pp. 115315–115334, 2021.
[79]
Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow migration for NFV,” in Proc. IEEE 24th Int. Conf. Netw. Protoc., 2016, pp. 1–10.
[80]
M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller, “Stateless network functions,” in Proc. ACM SIGCOMM Workshop Hot Topics Middleboxes Netw. Function Virtualization, 2015, pp. 49–54.
[81]
M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network functions: Breaking the tight coupling of state and processing,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementation, Boston, MA: USENIX Association, 2017, pp. 97–112. [Online]. Available: https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan

Index Terms

  1. Live Migration of Video Analytics Applications in Edge Computing
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image IEEE Transactions on Mobile Computing
        IEEE Transactions on Mobile Computing  Volume 23, Issue 3
        March 2024
        501 pages

        Publisher

        IEEE Educational Activities Department

        United States

        Publication History

        Published: 20 February 2023

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media