Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets

Published: 01 March 2019 Publication History

Abstract

Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+, and Market1501. The evaluation codebase and results will be made publicly available for community use.

References

[1]
Y. Li, Z. Wu, S. Karanam, and R. Radke, “ Real-world re-identification in an airport camera network,” in Proc. Int. Conf. Distrib. Smart Cameras, 2014, Art. no. .
[2]
S. Gong, M. Cristani, S. Yan, and C. C. Loy, Person Re-Identification . Berlin, Germany: Springer, vol. Volume 1, 2014.
[3]
O. Camps, et al., “ From the lab to the real world: Re-identification in an airport camera network,” in Proc. IEEE Trans. Circuits Syst. Video Technol., vol. Volume 27, no. Issue 3, 2017, pp. 540–553.
[4]
D. Gray and H. Tao, “ Viewpoint invariant pedestrian recognition with an ensemble of localized features,” in Proc. Eur. Conf. Comput. Vis., 2008, pp. 262–275.
[5]
B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang, “ Person re-identification by support vector ranking,” in Proc. British Mach. Vis. Conf., 2010, pp. 21.1–21.11.
[6]
W.-S. Zheng, S. Gong, and T. Xiang, “ Person re-identification by probabilistic relative distance comparison,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 649–656.
[7]
M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, “ Large scale metric learning from equivalence constraints,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2288–2295.
[8]
A. Mignon and F. Jurie, “ PCCA: A new approach for distance learning from sparse pairwise constraints,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2666–2672.
[9]
R. Zhao, W. Ouyang, and X. Wang, “ Unsupervised salience learning for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3586–3593.
[10]
L. Bazzani, M. Cristani, and V. Murino, “ Symmetry-driven accumulation of local features for human characterization and re-identification,” Comput. Vis. Image Understanding, vol. Volume 117, no. Issue 2, pp. 130–144, 2013.
[11]
S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian, “ Local fisher discriminant analysis for pedestrian re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3318–3325.
[12]
L. An, M. Kafai, S. Yang, and B. Bhanu, “ Reference-based person re-identification,” in Proc. 10th IEEE Int. Conf. Adv. Video Signal Based Surveillance., 2013, pp. 244–249.
[13]
F. Xiong, M. Gou, O. Camps, and M. Sznaier, “ Person re-identification using kernel-based metric learning methods,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 1–16.
[14]
R. Zhao, W. Ouyang, and X. Wang, “ Learning mid-level filters for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 144–151.
[15]
Z. Wu, Y. Li, and R. Radke, “ Viewpoint invariant human re-identification in camera networks using pose priors and subject-discriminative features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 37, no. Issue 5, pp. 1095–1108, 2015.
[16]
S. Paisitkriangkrai, C. Shen, and A. van den Hengel, “ Learning to rank in person re-identification with metric ensembles,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1846–1855.
[17]
S. Karanam, Y. Li, and R. J. Radke, “ Person re-identification with discriminatively trained viewpoint invariant dictionaries,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4516–4524.
[18]
S. Liao, Y. Hu, X. Zhu, and S. Z. Li, “ Person re-identification by local maximal occurrence representation and metric learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 2197–2206.
[19]
W.-S. Zheng, X. Li, T. Xiang, S. Liao, J. Lai, and S. Gong, “ Partial person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4678–4686.
[20]
X. Li, W.-S. Zheng, X. Wang, T. Xiang, and S. Gong, “ Multi-scale learning for low-resolution person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 3765–3773.
[21]
S. Messelodi and C. M. Modena, “ Boosting fisher vector based scoring functions for person re-identification,” Image Vis. Comput, vol. Volume 44, pp. 44–58, 2015.
[22]
D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, “ Similarity learning on an explicit polynomial kernel feature map for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1565–1573.
[23]
M. Gou, X. Zhang, A. Rates-Borras, S. Asghari-Esfeden, M. Sznaier, and O. Camps, “ Person re-identification in appearance impaired scenarios,” in Proc. British Mach. Vis. Conf., 2016, pp. 1–14.
[24]
D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino, “ Custom pictorial structures for re-identification,” in Proc. British Mach. Vis. Conf., 2011, pp. 68.1–68.11.
[25]
M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof, “ Person re-identification by descriptive and discriminative classification,” in Proc. Scandinavian Conf. Image Anal., 2011, pp. 91–102.
[26]
D. Baltieri, R. Vezzani, and R. Cucchiara, “ 3DPeS: 3D people dataset for surveillance and forensics,” in Proc. Joint ACM Workshop Human Gesture Behavior Understanding, 2011, pp. 59–64.
[27]
N. Martinel, C. Micheloni, and C. Piciarelli, “ Distributed signature fusion for person re-identification,” in Proc. 6th Int. Conf. Distrib. Smart Cameras, 2012, pp. 1–6.
[28]
T. Wang, S. Gong, X. Zhu, and S. Wang, “ Person re-identification by video ranking,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 688–703.
[29]
A. Das, A. Chakraborty, and A. K. Roy-Chowdhury, “ Consistent re-identification in a camera network,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 330–345.
[30]
C. C. Loy, C. Liu, and S. Gong, “ Person re-identification by manifold ranking,” in Proc. IEEE Int. Conf. Image Process., 2013, pp. 3567–3571.
[31]
D. Scharstein and R. Szeliski, “ A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis., vol. Volume 47, no. pp.1</fpage>––3</lpage>, pp. <fpage>7<lpage>42, 2002.
[32]
S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “ A database and evaluation methodology for optical flow,” Int. J. Comput. Vis., vol. Volume 92, no. Issue 1, pp. 1–31, 2011.
[33]
C. Schmid, “ Constructing models for content-based image retrieval,” in Proc. IEEE Comput. Society Conf. Comput. Vis. Pattern Recognit., 2001, pp. II-39–II-45.
[34]
I. Fogel and D. Sagi, “ Gabor filters as texture discriminator,” Biological Cybern., vol. Volume 61, no. Issue 2, pp. 103–113, 1989.
[35]
B. Ma, Y. Su, and F. Jurie, “ Local descriptors encoded by fisher vectors for person re-identification,” in Proc. Eur. Conf. Comput. Vis. Workshops, 2012, pp. 413–422.
[36]
J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “ Image classification with the fisher vector: Theory and practice,” Int. J. Comput. Vis., vol. Volume 105, no. Issue 3, pp. 222–245, 2013.
[37]
B. Ma, Y. Su, and F. Jurie, “ Covariance descriptor based on bio-inspired features for person re-identification and face verification,” Image Vis. Comput., vol. Volume 32, no. Issue 6, pp. 379–390, 2014.
[38]
M. Riesenhuber and T. Poggio, “ Hierarchical models of object recognition in cortex,” Nature Neuroscience, vol. Volume 2, no. Issue 11, pp. 1019–1025, 1999.
[39]
O. Tuzel, F. Porikli, and P. Meer, “ Pedestrian detection via classification on riemannian manifolds,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 30, no. Issue 10, pp. 1713–1727, 2008.
[40]
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “ Deepface: Closing the gap to human-level performance in face verification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1701–1708.
[41]
L. Zheng, et al., “ MARS: A video benchmark for large-scale person re-identification,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 868–884.
[42]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ Imagenet classification with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.
[43]
K. He, X. Zhang, S. Ren, and J. Sun, “ Deep residual learning for image recognition,” in Proc. IEEE conf. Comput. Vis. Patt. Recog., 2016, pp. 770–778.
[44]
K. Simonyan and A. Zisserman, “ Very deep convolutional networks for large-scale image recognition,” CoRR, vol. Volume abs/1409.1556, 2014, http://arxiv.org/abs/1409.1556
[45]
T. Ojala, M. Pietikäinen, and D. Harwood, “ A comparative study of texture measures with classification based on featured distributions,” Pattern Recognit., vol. Volume 29, no. Issue 1, pp. 51–59, 1996.
[46]
S. Liao, G. Zhao, V. Kellokumpu, M. Pietikäinen, and S. Z. Li, “ Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes,” in Proc. IEEE Comput. Society Conf. Comput. Vis. Pattern Recognit., 2010, pp. 1301–1306.
[47]
D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “ A multiscale retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process., vol. Volume 6, no. Issue 7, pp. 965–976, 1997.
[48]
T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato, “ Hierarchical gaussian descriptor for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 1363–1372.
[49]
L. Zheng, Y. Yang, and A. G. Hauptmann, “ Person re-identification: Past, present and future,” arXiv:1610.02984, 2016.
[50]
G. Lisanti, I. Masi, A. D. Bagdanov, and A. Del Bimbo, “ Person re-identification by iterative re-weighted sparse ranking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 37, no. Issue 8, pp. 1629–1642, 2015.
[51]
R. A. Fisher, “ The use of multiple measurements in taxonomic problems,” Ann. Eugenics, vol. Volume 7, no. Issue 2, pp. 179–188, 1936.
[52]
J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “ Information-theoretic metric learning,” in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 209–216.
[53]
Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith, “ Learning locally-adaptive decision functions for person verification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3610–3617.
[54]
S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “ Graph embedding and extensions: A general framework for dimensionality reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 29, no. Issue 1, pp. 40–51, 2007.
[55]
K. Q. Weinberger and L. K. Saul, “ Distance metric learning for large margin nearest neighbor classification,” J. Mach. Learn. Res., vol. Volume 10, pp. 207–244, 2009.
[56]
G. Lisanti, I. Masi, and A. Del Bimbo, “ Matching people across camera views using kernel canonical correlation analysis,” in Proc. Int. Conf. Distrib. Smart Cameras, 2014, Art. no. .
[57]
L. Zhang, T. Xiang, and S. Gong, “ Learning a discriminative null space for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1239–1248.
[58]
H. Cevikalp and B. Triggs, “ Face recognition based on image sets,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2010, pp. 2567–2573.
[59]
M. Yang, P. Zhu, L. Van Gool, and L. Zhang, “ Face recognition based on regularized nearest points between image sets,” in Proc. Int. Conf. Workshops Automatic Face Gesture Recognit., 2013, pp. 1–7.
[60]
S. Karanam, Y. Li, and R. Radke, “ Sparse re-id: Block sparsity for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2015, pp. 33–40.
[61]
C. Liu, C. C. Loy, S. Gong, and G. Wang, “ POP: Person re-identification post-rank optimisation,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 441–448.
[62]
J. Garcia, N. Martinel, C. Micheloni, and A. Gardel, “ Person re-identification ranking optimisation by discriminant context information analysis,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1305–1313.
[63]
S. Bak, E. Corvee, F. Bremond, and M. Thonnat, “ Multiple-shot human re-identification by mean riemannian covariance grid,” in Proc. 8th IEEE Int. Conf. Adv. Video Signal Based Surveillance, 2011, pp. 179–184.
[64]
C. Su, F. Yang, S. Zhang, Q. Tian, L. S. Davis, and W. Gao, “ Multi-task learning with low rank attribute embedding for person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 3739–3747.
[65]
R. Layne, T. M. Hospedales, and S. Gong, “ Person re-identification by attributes,” in Proc. British Mach. Vis. Conf., 2012, pp. 1–11.
[66]
Z. Shi, T. M. Hospedales, and T. Xiang, “ Transferring a semantic representation for person re-identification and search,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 4184–4193.
[67]
M. Eisenbach, A. Kolarow, A. Vorndran, J. Niebling, and H.-M. Gross, “ Evaluation of multi feature fusion at score-level for appearance-based person re-identification,” in Proc. Int. Joint Conf. Neural Netw., 2015, pp. 1–8.
[68]
L. Zheng, S. Wang, L. Tian, F. He, Z. Liu, and Q. Tian, “ Query-adaptive late fusion for image search and person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1741–1750.
[69]
N. Martinel, C. Micheloni, and G. L. Foresti, “ A pool of multiple person re-identification experts,” Pattern Recognit. Lett., vol. Volume 71, pp. 23–30, 2016.
[70]
R. Satta, “ Appearance descriptors for person re-identification: A comprehensive review,” CoRR, vol. Volume abs/1307.5748, 2013, http://arxiv.org/abs/1307.5748
[71]
R. Vezzani, D. Baltieri, and R. Cucchiara, “ People reidentification in surveillance and forensics: A survey,” ACM Comput. Surveys, vol. Volume 46, no. Issue 2, 2013, Art. no. .
[72]
A. Bedagkar-Gala and S. K. Shah, “ A survey of approaches and trends in person re-identification,” Image Vis. Comput., vol. Volume 32, no. Issue 4, pp. 270–286, 2014.
[73]
E. Ahmed, M. Jones, and T. K. Marks, “ An improved deep learning architecture for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3908–3916.
[74]
P. Dollár, R. Appel, S. Belongie, and P. Perona, “ Fast feature pyramids for object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 36, no. Issue 8, pp. 1532–1545, 2014.
[75]
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “ Object detection with discriminatively trained part-based models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 32, no. Issue 9, pp. 1627–1645, 2010.
[76]
C. C. Loy, T. Xiang, and S. Gong, “ Time-delayed correlation analysis for multi-camera activity understanding,” Int. J. Comput. Vis., vol. Volume 90, no. Issue 1, pp. 106–129, 2010.
[77]
S. Wang, M. Lewandowski, J. Annesley, and J. Orwell, “ Re-identification of pedestrians with variable occlusion and scale,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2011, pp. 1876–1882.
[78]
A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey, “ A database for person re-identification in multi-camera surveillance networks,” in Proc. Int. Conf. Digital Image Comput. Tech. Appl., 2012, pp. 1–8.
[79]
W. Li, R. Zhao, and X. Wang, “ Human reidentification with transferred metric learning,” in Proc. Asian Conf. Comput. Vis., 2012, pp. 31–44.
[80]
W. Li and X. Wang, “ Locally aligned feature transforms across views,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3594–3601.
[81]
W. Li, R. Zhao, T. Xiao, and X. Wang, “ DeepReId: Deep filter pairing neural network for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 152–159.
[82]
D. Figueira, M. Taiana, A. Nambiar, J. Nascimento, and A. Bernardino, “ The HDA+ data set for research on fully automated re-identification systems,” in Proc. Eur. Conf. Comput. Vis. Workshops, 2014, pp. 241–255.
[83]
M. Gou, S. Karanam, W. Liu, O. Camps, and R. J. Radke, “ DukeMTMC4ReID: A large-scale multi-camera person re-identification dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2017, pp. 1425–1434.
[84]
R. Benenson, M. Omran, J. Hosang, and B. Schiele, “ Ten years of pedestrian detection, what have we learned?” arXiv:1411.4304, 2014.
[85]
E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “ Performance measures and a data set for multi-target, multi-camera tracking,” in 2nd Workshop Benchmarking Multi-Target Tracking, 2016, pp. 17–35.
[86]
L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “ Scalable person re-identification: A benchmark,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1116–1124.
[87]
E. Rosten, R. Porter, and T. Drummond, “ Faster and better: A machine learning approach to corner detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 32, no. Issue 1, pp. 105–119, 2010.
[88]
B. D. Lucas and T. Kanade, “ An iterative image registration technique with an application to stereo vision,” in Proc. Imaging Understanding Workshop, 1981, pp. 674–679.
[89]
S. Karanam, E. Lam, and R. J. Radke, “ Rank persistence: Assessing the temporal performance of real-world person re-identification,” in Proc. ACM/IEEE Int. Conf. Distrib. Smart Cameras, 2017, pp. 157–162.
[90]
T. Wang, S. Gong, X. Zhu, and S. Wang, “ Person re-identification by discriminative selection in video ranking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume 38, no. Issue 12, pp. 2501–2514, 2016.
[91]
K. Liu, B. Ma, W. Zhang, and R. Huang, “ A spatio-temporal appearance representation for video-based pedestrian re-identification,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 3810–3818.
[92]
N. McLaughlin, J. Martinez del Rincon, and P. Miller, “ Recurrent convolutional network for video-based person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1325–1334.
[93]
S. Karanam, Y. Li, and R. J. Radke, “ Person re-identification with block sparse recovery,” Image Vis. Comput., vol. Volume 60, pp. 75–90, 2017.
[94]
D. H. Foley and J. W. Sammon, “ An optimal set of discriminant vectors,” IEEE Trans. Comput., vol. Volume C-24, no. Issue 3, pp. 281–289, 1975.
[95]
C. Szegedy, et al., “ Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.
[96]
G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “ Densely connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2261–2269.
[97]
W. Chen, X. Chen, J. Zhang, and K. Huang, “ Beyond triplet loss: A deep quadruplet network for person re-identification,” in IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR), Jul. 2017.
[98]
H. Jégou, M. Douze, C. Schmid, and P. Pérez, “ Aggregating local descriptors into a compact image representation,” in Proc. IEEE Comput. Society Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3304–3311.
[99]
S. Ren, K. He, R. Girshick, and J. Sun, “ Faster R-CNN: Towards real-time object detection with region proposal networks,” in Advances Neural Inf. Process. Syst., 2015, pp. 1–9.
[100]
D. Li, X. Chen, Z. Zhang, and K. Huang, “ Learning deep context-aware features over body and latent parts for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 384–393.
[101]
H. Zhao, et al., “ Spindle net: Person re-identification with human body region guided feature decomposition and fusion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1077–1085.
[102]
T.-Y. Lin, A. RoyChowdhury, and S. Maji, “ Bilinear CNN models for fine-grained visual recognition,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1449–1457.
[103]
R. R. Varior, M. Haloi, and G. Wang, “ Gated siamese convolutional neural network architecture for human re-identification,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 791–808.
[104]
J. Long, E. Shelhamer, and T. Darrell, “ Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431–3440.
[105]
G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “ Exploring context with deep structured models for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Volume PP, no. Issue 99, p. pp.1, 2018.
[106]
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “ Learning spatiotemporal features with 3D convolutional networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4489–4497.
[107]
L. Wang, “ Temporal segment networks: Towards good practices for deep action recognition,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 20–36.
[108]
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “ Unpaired image-to-image translation using cycle-consistent adversarial networks,” in IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 2223–2232.
[109]
Z. Zheng, L. Zheng, and Y. Yang, “ Unlabeled samples generated by gan improve the person re-identification baseline in vitro,” in IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 3754–3762.
[110]
Y. Gong, S. Karanam, Z. Wu, K.-C. Peng, J. Ernst, and P. C. Doerschuk, “ Learning compositional visual concepts with mutual consistency,” CoRR, vol. abs/1711.06148, 2017, http://arxiv.org/abs/1711.06148
[111]
J. E. Cutting and L. T. Kozlowski, “ Recognizing friends by their walk: Gait perception without familiarity cues,” Bulletin Psychonomic Society, vol. Volume 9, no. Issue 5, pp. 353–356, 1977.
[112]
Z. Liu, Z. Zhang, Q. Wu, and Y. Wang, “ Enhancing person re-identification by integrating gait biometric,” Neurocomputing, vol. Volume 168, pp. 1144–1156, 2015.
[113]
S. M. Assari, H. Idrees, and M. Shah, “ Human re-identification in crowd videos using personal, social and environmental constraints,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 119–136.
[114]
W.-S. Zheng, S. Gong, and T. Xiang, “ Associating groups of people,” in Proc. British Mach. Vis. Conf., 2009, pp. 23.1–23.11.
[115]
A. Haque, A. Alahi, and L. Fei-Fei, “ Recurrent attention models for depth-based person identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1229–1238.
[116]
S. Song, S. P. Lichtenberg, and J. Xiao, “ Sun RGB-D: A RGB-D scene understanding benchmark suite,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 567–576.

Cited By

View all
  • (2024)M2FNet: Mask-Guided Multi-Level Fusion for RGB-T Pedestrian DetectionIEEE Transactions on Multimedia10.1109/TMM.2024.338137726(8678-8690)Online publication date: 25-Mar-2024
  • (2024)Illumination Distillation Framework for Nighttime Person Re-Identification and a New BenchmarkIEEE Transactions on Multimedia10.1109/TMM.2023.326606626(406-419)Online publication date: 1-Jan-2024
  • (2024)A Video Is Worth Three Views: Trigeminal Transformers for Video-Based Person Re-IdentificationIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.338691425:9(12818-12828)Online publication date: 17-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Pattern Analysis and Machine Intelligence  Volume 41, Issue 3
March 2019
252 pages

Publisher

IEEE Computer Society

United States

Publication History

Published: 01 March 2019

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)M2FNet: Mask-Guided Multi-Level Fusion for RGB-T Pedestrian DetectionIEEE Transactions on Multimedia10.1109/TMM.2024.338137726(8678-8690)Online publication date: 25-Mar-2024
  • (2024)Illumination Distillation Framework for Nighttime Person Re-Identification and a New BenchmarkIEEE Transactions on Multimedia10.1109/TMM.2023.326606626(406-419)Online publication date: 1-Jan-2024
  • (2024)A Video Is Worth Three Views: Trigeminal Transformers for Video-Based Person Re-IdentificationIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2024.338691425:9(12818-12828)Online publication date: 17-May-2024
  • (2024)Unsupervised person Re-identificationNeurocomputing10.1016/j.neucom.2023.127193572:COnline publication date: 1-Mar-2024
  • (2023)Pioneering and Mining Artificial Intelligence-Driven Design Innovation in the Context of DigitizationProceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering10.1145/3652628.3652816(1145-1152)Online publication date: 17-Nov-2023
  • (2023)Deep Learning Based Occluded Person Re-Identification: A SurveyACM Transactions on Multimedia Computing, Communications, and Applications10.1145/361053420:3(1-27)Online publication date: 23-Oct-2023
  • (2023)Learning Invariance From Generated Variance for Unsupervised Person Re-IdentificationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.322686645:6(7494-7508)Online publication date: 1-Jun-2023
  • (2023)Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold LearningIEEE Transactions on Image Processing10.1109/TIP.2023.326886832(2811-2826)Online publication date: 1-Jan-2023
  • (2023)COCAS+: Large-Scale Clothes-Changing Person Re-Identification With Clothes TemplatesIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2022.321676933:4(1839-1853)Online publication date: 1-Apr-2023
  • (2023)COVID-19 contact tracking based on person reidentification and geospatial dataJournal of King Saud University - Computer and Information Sciences10.1016/j.jksuci.2023.10155835:5Online publication date: 13-Jul-2023
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media