Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

SmartSLA: Cost-Sensitive Management of Virtualized Resources for CPU-Bound Database Services

Published: 01 May 2015 Publication History

Abstract

Virtualization-based multi-tenant database consolidation is an important technique for database-as-a-service (DBaaS) providers to minimize their total cost which is composed of SLA penalty cost, infrastructure cost and action cost. Due to the bursty and diverse tenant workloads, over-provisioning for the peak or under-provisioning for the off-peak often results in either infrastructure cost or service level agreement (SLA) penalty cost. Moreover, although the process of scaling out database systems will help DBaaS providers satisfy tenants' service level agreement, its indiscriminate use has performance implications or incurs action cost. In this paper, we propose SmartSLA, a cost-sensitive virtualized resource management system for CPU-bound database services which is composed of two modules. The system modeling module uses machine learning techniques to learn a model for predicting the SLA penalty cost for each tenant under different resource allocations. Based on the learned model, the resource allocating module dynamically adjusts the resource allocation by weighing the potential reduction of SLA penalty cost against increase of infrastructure cost and action cost. SmartSLA is evaluated by using the TPC-W and modified YCSB benchmarks with dynamic workload trace and multiple database tenants. The experimental results show that SmartSLA is able to minimize the total cost under time-varying workloads compared to the other cost-insensitive approaches.

References

[1]
Transaction processing performance council. tpc benchmark w (web commerce), San Francisco, CA, USA, number revision 1.8, Feb. 2002.
[2]
M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala, “Interaction-aware scheduling of report-generation workloads”, The VLDB J., vol. 20, pp. 589–615, Aug. 2011.
[3]
C. Albrecht, A. Merchant, M. Stokely, M. Waliji, F. Labelle, N. Coehlo, X. Shi, and E. Schrock, “Janus: Optimal flash provisioning for cloud storage workloads”, Proc. USENIX Conf. Annu. Tech. Conf., 2013, pp. 91–102.
[4]
M. Arlitt, and T. Jin, Workload characterization of the 1998 world cup web site, HP Laboratories, Palo Alto, CA, USA, Tech. Rep., 1999.
[5]
S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-tenant databases for software as a service: Schema-mapping techniques”, Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008, pp. 1195– 1206.
[6]
P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization ”, Proc. 19th ACM Symp. Oper. Syst. Principles, 2003, pp. 164– 177.
[7]
J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle, “Managing energy and server resources in hosting centers”, Proc. 18th ACM Symp. Oper. Syst. Principles, 2001, pp. 103– 116.
[8]
Y. Chi, H. J. Moon, and H. Hacigümüş, “iCBS: incremental cost-based scheduling under piecewise linear SLAs”, Proc. VLDB Endowment, vol. 4, pp. 563–574, 2011.
[9]
H.-T. Chou, and D. J. DeWitt, “An evaluation of buffer management strategies for relational database systems”, Proc. 11th Int. Conf. Very Large Data Bases, 1985, pp. 127– 141.
[10]
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud serving systems with YCSB”, Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 143–154 .
[11]
C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan, “Workload-aware database monitoring and consolidation”, Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 313–324.
[12]
S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi, “Albatross: Lightweight elasticity in shared storage databases for the cloud using live data migration”, Proc. VLDB Endowment, vol. 4, pp. 494–505, 2011.
[13]
G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly available key-value store”, Proc. 21st ACM SIGOPS Symp. Oper. Syst. Principles, 2007, pp. 205– 220.
[14]
Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury, “MIMO control of an apache web server: Modeling and controller design”, Proc. Amer. Control Conf., 2002, pp. 4922–4927.
[15]
S. Duan, V. Thummala, and S. Babu, “Tuning database configuration parameters with iTuned”, Proc. Int. Conf. Very Large Databases, 2009, pp. 1246–1257.
[16]
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification2nd, New York, NY, USA: Wiley, 2001.
[17]
J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal, “Performance prediction for concurrent database workloads”, Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 337–348.
[18]
J. Friedman, “Stochastic gradient boosting ”, Comput. Stat. Data Anal., vol. 38, pp. 367–378, 1999.
[19]
A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, O. Fox, and M. Jordan, “Predicting multiple metrics for queries: Better decisions enabled by machine learning”, Proc. IEEE Int. Conf. Data Eng., 2009, pp. 592–603.
[20]
A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman, “Demand based hierarchical QoS using storage resource pools”, Proc. USENIX Conf. Annu. Tech. Conf., 2012, pp. 1–14 .
[21]
D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing performance isolation across virtual machines in Xen”, Proc. ACM/IFIP/USENIX Int. Conf. Middleware, 2006, pp. 342– 362.
[22]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, “The WEKA data mining software: An update ”, Proc. 5th Australian Joint Conf. Artif. Intell., 2009, vol. 11, pp. 41–50.
[23]
J. Hwang, and T. Wood, “Adaptive performance-aware distributed memory caching”, Proc. USENIX 10th Int. Conf. Auton. Comput., 2013, pp. 33– 43.
[24]
D. Li, X. Liao, H. Jin, B. B. Zhou, and Q. Zhang, “A new disk I/O model of virtualized cloud environment”, IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1129 –1138, Jun. 2013.
[25]
Y. Lu, T. Abdelzaher, and A. Saxena, “Design, implementation, and evaluation of differentiated caching services”, IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 5, pp. 440 –452, May 2004.
[26]
B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance and resource modeling in highly-concurrent OLTP workloads”, Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 301–312.
[27]
R. J. Quinlan, “Learning with continuous classes ”, Proc. 5th Australian Joint Conf. Artif. Intell., 1992, pp. 343– 348.
[28]
A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation for the cloud”, Proc. 3rd ACM Symp. Cloud Comput., 2012p. 15.
[29]
B. Reinwald, “Database support for multi-tenant applications”, Proc. IEEE Workshop Inform. Softw. Serv., 2010, pp. 1–2.
[30]
B. Schroeder, M. Harchol-Balter, A. Iyengar, E. M. Nahum, and A. Wierman, “How to determine a good multi-programming level for external scheduling”, Proc. 22nd Int. Conf. Data Eng., 2006, pp. 60–.
[31]
A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath, “Automatic virtual machine configuration for database workloads”, Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008, pp. 953–966.
[32]
M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland, “The end of an architectural era: (it’s time for a complete rewrite)”, Proc. 33rd Int. Conf. Very Large Data Bases, 2007, pp. 1150– 1160.
[33]
B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and application profiling in shared hosting platforms”, Proc. 5th Symp. Oper. Syst. Des. Implementation, 2002, pp. 239– 254.
[34]
C. D. Weissman, and S. Bobrowski, “The design of the force.com multitenant internet application development platform”, Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009, pp. 889–896.
[35]
P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacigumus, “Intelligent management of virtualized resources for database systems in cloud environment”, Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp. 87–98.
[36]
F. Yang, J. Shanmugasundaram, and R. Yerneni, “A scalable data platform for a large number of small applications”, Proc. 4th Biennial Conf. Innovative Data Syst. Res., 2009.

Cited By

View all
  • (2024)Cloud-Native Database Systems and Unikernels: Reimagining OS Abstractions for Modern HardwareProceedings of the VLDB Endowment10.14778/3659437.365946217:8(2115-2122)Online publication date: 1-Apr-2024
  • (2023)Automated cloud resources provisioning with the use of the proximal policy optimizationThe Journal of Supercomputing10.1007/s11227-022-04924-379:6(6674-6704)Online publication date: 1-Apr-2023
  • (2022)A maturity model for AI-empowered cloud-native databases: from the perspective of resource managementJournal of Cloud Computing: Advances, Systems and Applications10.1186/s13677-022-00318-111:1Online publication date: 7-Sep-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems  Volume 26, Issue 5
May 2015
291 pages

Publisher

IEEE Press

Publication History

Published: 01 May 2015

Author Tags

  1. multitenant databases
  2. Cloud computing
  3. virtualization
  4. database systems

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Cloud-Native Database Systems and Unikernels: Reimagining OS Abstractions for Modern HardwareProceedings of the VLDB Endowment10.14778/3659437.365946217:8(2115-2122)Online publication date: 1-Apr-2024
  • (2023)Automated cloud resources provisioning with the use of the proximal policy optimizationThe Journal of Supercomputing10.1007/s11227-022-04924-379:6(6674-6704)Online publication date: 1-Apr-2023
  • (2022)A maturity model for AI-empowered cloud-native databases: from the perspective of resource managementJournal of Cloud Computing: Advances, Systems and Applications10.1186/s13677-022-00318-111:1Online publication date: 7-Sep-2022
  • (2022)Multi-Tenant Cloud Data Services: State-of-the-Art, Challenges and OpportunitiesProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3522566(2465-2473)Online publication date: 10-Jun-2022
  • (2020)Management of Heterogeneous Cloud Resources with Use of the PPOEuro-Par 2020: Parallel Processing Workshops10.1007/978-3-030-71593-9_12(148-159)Online publication date: 24-Aug-2020
  • (2018)A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud Autoscaling SystemsACM Computing Surveys10.1145/319050751:3(1-40)Online publication date: 12-Jun-2018

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media