Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

UL-DL Duality for Cell-Free Massive MIMO With Per-AP Power and Information Constraints

Published: 13 March 2024 Publication History

Abstract

We derive a novel uplink-downlink duality principle for optimal joint precoding design under per-transmitter power and information constraints in fading channels. The information constraints model limited sharing of channel state information and data bearing signals across the transmitters. The main application is to cell-free networks, where each access point (AP) must typically satisfy an individual power constraint and form its transmit signal using limited cooperation capabilities. Our duality principle applies to ergodic achievable rates given by the popular hardening bound, and it can be interpreted as a nontrivial generalization of a previous result by Yu and Lan for deterministic channels. This generalization allows us to study involved information constraints going beyond the simple case of cluster-wise centralized precoding covered by previous techniques. Specifically, we show that the optimal joint precoders are, in general, given by an extension of the recently developed team minimum mean-square error method. As a particular yet practical example, we then solve the problem of optimal local precoding design in user-centric cell-free massive MIMO networks subject to per-AP power constraints.

References

[1]
H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
[2]
E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and power optimization in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445–4459, Jul. 2017.
[3]
G. Interdonato, P. Frenger, and E. G. Larsson, “Scalability aspects of cell-free massive MIMO,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–6.
[4]
M. Bashar, K. Cumanan, A. G. Burr, M. Debbah, and H. Q. Ngo, “On the uplink max–min SINR of cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2021–2036, Apr. 2019.
[5]
M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, M. Debbah, and P. Xiao, “Max–min rate of cell-free massive MIMO uplink with optimal uniform quantization,” IEEE Trans. Wireless Commun., vol. 67, no. 10, pp. 6796–6815, Oct. 2019.
[6]
G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Larsson, “Ubiquitous cell-free massive MIMO communications,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, 2019, Art. no.
[7]
S. Buzzi, C. D’Andrea, A. Zappone, and C. D’Elia, “User-centric 5G cellular networks: Resource allocation and comparison with the cell-free massive MIMO approach,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1250–1264, Feb. 2020.
[8]
E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Jul. 2020.
[9]
M. Attarifar, A. Abbasfar, and A. Lozano, “Subset MMSE receivers for cell-free networks,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4183–4194, Jun. 2020.
[10]
P. Liu, K. Luo, D. Chen, and T. Jiang, “Spectral efficiency analysis of cell-free massive MIMO systems with zero-forcing detector,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 795–807, Feb. 2020.
[11]
I. Atzeni, B. Gouda, and A. Tölli, “Distributed precoding design via over-the-air signaling for cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1201–1216, Feb. 2021.
[12]
G. Interdonato, H. Q. Ngo, and E. G. Larsson, “Enhanced normalized conjugate beamforming for cell-free massive MIMO,” IEEE Trans. Commun., vol. 69, no. 5, pp. 2863–2877, May 2021.
[13]
C. D’Andrea and E. G. Larsson, “Improving cell-free massive MIMO by local per-bit soft detection,” IEEE Commun. Lett., vol. 25, no. 7, pp. 2400–2404, Jul. 2021.
[14]
A. Lancho, G. Durisi, and L. Sanguinetti, “Cell-free massive MIMO with short packets,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2021, pp. 416–420.
[15]
L. Du, L. Li, H. Q. Ngo, T. C. Mai, and M. Matthaiou, “Cell-free massive MIMO: Joint maximum-ratio and zero-forcing precoder with power control,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3741–3756, Jun. 2021.
[16]
Z. H. Shaik, E. Björnson, and E. G. Larsson, “MMSE-optimal sequential processing for cell-free massive MIMO with radio stripes,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7775–7789, Nov. 2021.
[17]
S. Chen, J. Zhang, E. Björnson, J. Zhang, and B. Ai, “Structured massive access for scalable cell-free massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1086–1100, Apr. 2021.
[18]
F. Göttsch, N. Osawa, T. Ohseki, K. Yamazaki, and G. Caire, “Subspace-based pilot decontamination in user-centric scalable cell-free wireless networks,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 4117–4131, Jun. 2023.
[19]
E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Found. Trends® in Signal Process., vol. 11, nos. 3–4, pp. 154–655, 2017.
[20]
Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Foundations of user-centric cell-free massive MIMO,” Found. Trends® in Signal Process., vol. 14, nos. 3–4, pp. 162–472, 2021.
[21]
L. Miretti, E. Björnson, and D. Gesbert, “Team MMSE precoding with applications to cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6242–6255, Aug. 2022.
[22]
L. Miretti, E. Björnson, and D. Gesbert, “Team precoding towards scalable cell-free massive MIMO networks,” in Proc. 55th Asilomar Conf. Signals, Syst., Comput., 2021.
[23]
W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2646–2660, Jun. 2007.
[24]
E. Björnson and E. Jorswieck, Optimal Resource Allocation in Coordinated Multi-Cell Systems. Boston, MA, USA: Now, 2013.
[25]
L. Miretti, R. L. G. Cavalcante, and E. Björnson, “UL-DL duality for cell-free networks under per-AP power and information constraints,” Proc. IEEE Int. Conf. Commun. (ICC), 2023, pp. 5017–5023.
[26]
T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO. Cambridge, U.K.: Cambridge Univ. Press, 2016.
[27]
C. Zalinescu, Convex Analysis in General Vector Spaces. Singapore: World Scientific, 2002.
[28]
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[29]
S. Yüksel and T. Basar, Stochastic Networked Control Systems: Stabilization and Optimization Under Information Constraints. New York, NY, USA: Springer-Verlag, 2013.
[30]
A. Wiesel, Y.C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan. 2006.
[31]
B. T. Polyak, “Minimization of unsmooth functionals,” USSR Comput. Math. Math. Phys., vol. 9, no. 3, pp. 14–29, 1969.
[32]
Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. New York, NY, USA: Springer-Verlag, 2003.
[33]
M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–28, Jan. 2004.
[34]
R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341–1347, Sep. 1995.
[35]
M. Schubert and H. Boche, Interference Calculus—A General Framework for Interference Management and Network Utility Optimization. Berlin, Germany: Springer-Verlag, 2011.
[36]
L. Miretti, R. L. G. Cavalcante, and S. Stańczak, “Joint optimal beamforming and power control in cell-free massive MIMO,” in Proc. IEEE Global Conf. Commun. (GLOBECOM), 2022, pp. 770–775.
[37]
T. Piotrowski and R. L. G. Cavalcante, “The fixed point iteration of positive concave mappings converges geometrically if a fixed point exists: Implications to wireless systems,” IEEE Trans. Signal Process., vol. 70, pp. 4697–4710, 2022.
[38]
S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver optimization for multiuser MIMO systems: Duality and sum-MSE minimization,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5436–5446, Nov. 2007.
[39]
R. Radner, “Team decision problems,” Ann. Math. Statist., vol. 33, no. 3, pp. 857–881, 1962.
[40]
“Study on channel model for frequencies from 0.5 to 100 GHz (version 17),” 3GPP Mobile Competence Centre, Sophia Antipolis, France, Tech. Rep. TS 38.901, 2022.
[41]
R. L. G. Cavalcante, Y. Shen, and S. Stańczak, “Elementary properties of positive concave mappings with applications to network planning and optimization,” IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1774–1783, Apr. 2016.
[42]
H. Boche and M. Schubert, “Concave and convex interference functions—General characterizations and applications,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4951–4965, Oct. 2008.
[43]
G. Caire, “On the ergodic rate lower bounds with applications to massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 3258–3268, May 2018.
[44]
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. New York, NY, USA: Springer-Verlag, 2011.
[45]
H. Stark and Y. Yang, Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics. Hoboken, NJ, USA: Wiley, 1998.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing  Volume 72, Issue
2024
4446 pages

Publisher

IEEE Press

Publication History

Published: 13 March 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media