Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

InterAxis: Steering Scatterplot Axes via Observation-Level Interaction

Published: 31 January 2016 Publication History

Abstract

Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique to properly interpret, define, and change an axis in a user-driven manner. Users are given the ability to define and modify axes by dragging data items to either side of the x or y axes, from which the system computes a linear combination of data attributes and binds it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through two scenarios.

References

[1]
C. Ahlberg. Spotfire: An information exploration environment. SIGMOD Rec., 25(4) pp.25–29, Dec. 1996.
[2]
J. Alsakran, Y. Chen, Y. Zhao, J. Yang, and D. Luo. Streamit: Dynamic visualization and interactive exploration of text streams. In Proc. the IEEE Pacific Visualization Symposium (PacificVis), pages 131–138, 2011.
[3]
C. M. Bishop, M. Svensén, and C. K. Williams. GTM: The generative topographic mapping. Neural computation, 10(1) pp.215–234, 1998.
[4]
M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12) pp.2301–2309, Dec. 2011.
[5]
E. Brown, J. Liu, C. Brodley, and R. Chang. Dis-function: Learning distance functions interactively. In Proc. the IEEE Conference on Visual Analytics Science and Technology (VAST), pages 83–92, 2012.
[6]
H. Chernoff. The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association, 68(342) pp.361–368, 1973.
[7]
J. Choo, C. Lee, C. K. Reddy, and H. Park. UTOPIAN: User-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Transactions on Visualization and Computer Graphics (TVCG), 19(12) pp.1992–2001, 2013.
[8]
J. Choo, H. Lee, J. Kihm, and H. Park. iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In Proc. the IEEE Conference on Visual Analytics Science and Technology (VAST), pages 27–34, 2010.
[9]
J. Choo, H. Lee, Z. Liu, J. Stasko, and H. Park. An interactive visual testbed system for dimension reduction and clustering of large-scale high-dimensional data. In Proc. SPIE 8654, Visualization and Data Analysis (VDA), pages 1–15, feb 2013.
[10]
J. Chuang, D. Ramage, C. Manning, and J. Heer. Interpretation and trust: Designing model-driven visualizations for text analysis. In Proc. the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 443–452, 2012.
[11]
J. Claessen and J. van Wijk. Flexible linked axes for multivariate data visualization. IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12) pp.2310–2316, 2011.
[12]
W. C. Cleveland and M. E. McGill. Dynamic graphics for statistics. CRC Press, Inc., 1988.
[13]
W. S. Cleveland. Visualizing Data. Hobart Press, 1993.
[14]
N. R. Draper, H. Smith, and E. Pownell. Applied regression analysis. Wiley, New York, 1966.
[15]
N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Transactions on Visualization and Computer Graphics (TVCG), 14(6) pp.1539–1148, 2008.
[16]
A. Endert. Semantic interaction for visual analytics: Toward coupling cognition and computation. IEEE Computer Graphics and Applications (CG&A), 34(4) pp.8–15, 2014.
[17]
A. Endert, P. Fiaux, and C. North. Semantic interaction for visual text analytics. In Proc. the SIGCHI Conference on Human Factors in Computing Systems, pages 473–482. ACM, 2012.
[18]
A. Endert, C. Han, D. Maiti, L. House, S. Leman, and C. North. Observation-level interaction with statistical models for visual analytics. In Proc. the IEEE Conference on Visual Analytics Science and Technology (VAST), pages 121–130, 2011.
[19]
Excel. version 2013 (vI5.0). Microsoft Corporation, Redmond, Washington, 2014.
[20]
S. Few. Now you see it: simple visualization techniques for quantitative analysis. Analytics Press, 2009.
[21]
I. K. Fodor. A survey of dimension reduction techniques, 2002.
[22]
T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice and Experience, 21(11) pp.1129–1164, 1991.
[23]
K. Fukunaga. Introduction to Statistical Pattern Recognition, second edition. Academic Press, Boston, 1990.
[24]
M. Gleicher. Explainers: Expert explorations with crafted projections. IEEE Transactions on Visualization and Computer Graphics (TVCG), 19(12) pp.2042–2051, 2013.
[25]
G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, 2012.
[26]
D. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang. iPCA: An Interactive System for PCA-based Visual Analytics Computer. Graphics Forum, 28(3) pp.767–774, 2009.
[27]
I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.
[28]
D. Keim. Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics (TVCG), 8(1) pp.1–8, jan/mar 2002.
[29]
T. Kohonen. Self-organizing maps. Springer, 2001.
[30]
B. Kondo and C. Collins. Dimpvis: Exploring time-varying information visualizations by direct manipulation. IEEE Transactions on Visualization and Computer Graphics (TVCG), 20(12) pp.2003–2012, 2014.
[31]
J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29: pp.1–27, 1964.
[32]
J. LeBlanc, M. Ward, and N. Wittels. Exploring n-dimensional databases. In Proc. the 1 st conference on Visualization, pages 230–237, 1990.
[33]
J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Science & Business Media, 2007.
[34]
MATLAB. version 8.4.0 (R2014b). The MathWorks Inc., Natick, Massachusetts, 2014.
[35]
K. A. Olsen, R. R. Korfhage, K. M. Sochats, M. B. Spring, and J. G. Williams. Visualization of a document collection: The vibe system. Information Processing & Management, 29(1) pp.69–81, 1993.
[36]
L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research (JMLR), 4: pp.119–155, 2003.
[37]
I. Shipman, Frank M. and C. Marshall. Formality considered harmful: Experiences, emerging themes, and directions on the use of formal representations in interactive systems. Computer Supported Cooperative Work (CSCW), 8(4) pp.333–352, 1999.
[38]
B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Proc. IEEE Symposium on Visual Languages,1996, pages 336–343. IEEE, 1996.
[39]
A. Skupin. A cartographic approach to visualizing conference abstracts. IEEE Computer Graphics and Applications (CG&A), 22(1) pp.50–58, 2002.
[40]
D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: evolving from XGobi into an extensible framework for interactive data visualization. Computational Statistics & Data Analysis, 43: pp.423–444, 2003.
[41]
Tableau. version 8.1. Tableau Software, Seattle, Washington, 2014.
[42]
J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 290(5500) pp.2319–2323, 2000.
[43]
E. R. Tufte and P. Graves-Morris. The visual display of quantitative information, volume 2. Graphics press Cheshire, CT, 1983.
[44]
C. Turkay, P. Filzmoser, and H. Hauser. Brushing dimensions - a dual visual analysis model for high-dimensional data. IEEE Transactions on Visualization and Computer Graphics (TVCG), 17(12) pp.2591–2599, 2011.
[45]
J. Utts. Seeing through statistics, 2005.
[46]
L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9: pp.2579–2605, 2008.
[47]
C. Ware. Information visualization: perception for design. Elsevier, 2012.
[48]
J. A. Wise. The ecological approach to text visualization. Journal of the American Society for Information Science, 50(13) pp.1224–1233, 1999.
[49]
J. S. Yi, R. Melton, J. Stasko, and J. A. Jacko. Dust & magnet: multivariate information visualization using a magnet metaphor. Information Visualization, 4(4) pp.239–256, 2005.
[50]
J. Zhao, C. Collins, F. Chevalier, and R. Balakrishnan. Interactive exploration of implicit and explicit relations in faceted datasets. IEEE Transactions on Visualization and Computer Graphics (TVCG), 19(12) 2080–2089, 2013.

Cited By

View all
  • (2024)Impact Charts: A Tool for Identifying Systematic Bias in Social Systems and DataProceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency10.1145/3630106.3658965(1187-1198)Online publication date: 3-Jun-2024
  • (2024)Unmasking Dunning-Kruger Effect in Visual Reasoning & JudgmentIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632631:1(743-753)Online publication date: 17-Sep-2024
  • (2024)Interactive Subspace Cluster Analysis Guided by Semantic Attribute AssociationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325637630:7(4197-4210)Online publication date: 1-Jul-2024
  • Show More Cited By

Index Terms

  1. InterAxis: Steering Scatterplot Axes via Observation-Level Interaction
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Visualization and Computer Graphics
    IEEE Transactions on Visualization and Computer Graphics  Volume 22, Issue 1
    Jan. 2016
    1034 pages

    Publisher

    IEEE Educational Activities Department

    United States

    Publication History

    Published: 31 January 2016

    Author Tags

    1. model steering
    2. Scatterplots
    3. user interaction

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Impact Charts: A Tool for Identifying Systematic Bias in Social Systems and DataProceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency10.1145/3630106.3658965(1187-1198)Online publication date: 3-Jun-2024
    • (2024)Unmasking Dunning-Kruger Effect in Visual Reasoning & JudgmentIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632631:1(743-753)Online publication date: 17-Sep-2024
    • (2024)Interactive Subspace Cluster Analysis Guided by Semantic Attribute AssociationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325637630:7(4197-4210)Online publication date: 1-Jul-2024
    • (2023)Toward Addressing Ambiguous Interactions and Inferring User Intent with Dimension Reduction and Clustering Combinations in Visual AnalyticsACM Transactions on Interactive Intelligent Systems10.1145/358856514:1(1-35)Online publication date: 17-Apr-2023
    • (2023)Exploring Challenges and Opportunities to Support Designers in Learning to Co-create with AI-based Manufacturing Design ToolsProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580999(1-20)Online publication date: 19-Apr-2023
    • (2023)Visual Exploration of Relationships and Structure in Low-Dimensional EmbeddingsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.315676029:7(3312-3326)Online publication date: 1-Jul-2023
    • (2022)Interactive Dimensionality Reduction for Comparative AnalysisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311480728:1(758-768)Online publication date: 1-Jan-2022
    • (2021)Construction of a Complex System Based on Big Data for the Intelligent Service System of Youth Physical HealthComplexity10.1155/2021/66353462021Online publication date: 1-Jan-2021
    • (2021)Development of Artificial Intelligence System Based on Big Data Analysis for College Students' Physical Health Management2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture10.1145/3495018.3495485(1789-1791)Online publication date: 23-Oct-2021
    • (2021)The Design of Physical Analysis System for College Students Based on Data Mining Technology2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture10.1145/3495018.3495405(1385-1389)Online publication date: 23-Oct-2021
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media