Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

BiSet: Semantic Edge Bundling with Biclusters for Sensemaking

Published: 31 January 2016 Publication History

Abstract

Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, “in-between”, to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

References

[1]
B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers. Visualizing Sets and Set-typed Data: State-of-the-Art and Future Challenges. In EuroVis-STARs. Eurographics Association, 2014.
[2]
C. Andrews, A. Endert, and C. North. Space to think: large high-resolution displays for sensemaking. In Proceedings of the Conference on Human Factors in Computing Systems, pages 55–64. ACM, 2010.
[3]
S. Barkow, S. Bleuler, A. Prelić, P. Zimmermann, and E. Zitzler. Bicat: a biclustering analysis toolbox. Bioinformatics, 22(10):1282–1283, 2006.
[4]
R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technometrics, 29(2):127–142, 1987.
[5]
B. Carpenter. Phrasal queries with lingpipe and lucene: ad hoc genomics text retrieval. In TREC, 2004.
[6]
D. B. Carr, R. J. Littlefield, W. Nicholson, and J. Littlefield. Scatterplot matrix techniques for large n. Journal of the American Statistical Association, 82(398):424–436, 1987.
[7]
G. ChinJr. O. A. Kuchar, and K. E. Wolf. Exploring the analytical processes of intelligence analysts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 11–20. ACM, 2009.
[8]
J. Chuang, C. D. Manning, and J. Heer. Termite: Visualization techniques for assessing textual topic models. In Proceedings of International Working Conference on Advanced Visual Interfaces, pages 74–77. ACM, 2012.
[9]
C. Collins and S. Carpendale. VisLink: Revealing Relationships Amongst Visualizations. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1192–1199, 2007.
[10]
C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set relations with isocontours over existing visualizations. Visualization and Computer Graphics, IEEE Transactions on, 15(6):1009–1016, 2009.
[11]
W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for graph visualization. Visualization and Computer Graphics, IEEE Transactions on, 14(6):1277–1284, 2008.
[12]
M. Dörk, N. H. Riche, G. Ramos, and S. Dumais. Pivotpaths: Strolling through faceted information spaces. Visualization and Computer Graphics, IEEE Transactions on, 18(12):2709–2718, 2012.
[13]
A. Endert, P. Fiaux, and C. North. Semantic interaction for sensemaking: inferring analytical reasoning for model steering. Visualization and Computer Graphics, IEEE Transactions on, 18(12):2879–2888, 2012.
[14]
P. Fiaux, M. Sun, L. Bradel, C. North, N. Ramakrishnan, and A. Endert. Bixplorer: Visual analytics with biclusters. Computer, 46(8):90–94, 2013.
[15]
T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice and experience, 21(11):1129–1164, 1991.
[16]
T. Geymayer, M. Steinberger, A. Lex, M. Streit, and D. Schmalstieg. Show me the invisible: visualizing hidden content. In Proceedings of the Conference on Human Factors in Computing Systems, pages 3705–3714. ACM, 2014.
[17]
M. Ghoniem, J. Fekete, and P. Castagliola. A comparison of the readability of graphs using node-link and matrix-based representations. In on Visualization, IEEE Symposium on, pages 17–24. IEEE, 2004.
[18]
J. P. Gonçalves, S. C. Madeira, and A. L. Oliveira. Biggests: integrated environment for biclustering analysis of time series gene expression data. BMC Research Notes, 2(1):124, 2009.
[19]
C. Gorg, Z. Liu, J. Kihm, J. Choo, H. Park, and J. Stasko. Combining computational analyses and interactive visualization for document exploration and sensemaking in jigsaw. Visualization and Computer Graphics, IEEE Transactions on, 19(10):1646–1663, 2013.
[20]
S. Gratzl, N. Gehlenborg, A. Lex, H. Pfister, and M. Streit. Domino: Extracting, Comparing, and Manipulating Subsets Across Multiple Tabular Datasets. Visualization and Computer Graphics, IEEE Transactions on, 20(12):2023–2032, 2014.
[21]
G. A. Grothaus, A. Mufti, and T. Murali. Automatic layout and visualization of biclusters. Algorithms for Molecular Biology, 1(1):15, 2006.
[22]
J. Heinrich, R. Seifert, M. Burch, and D. Weiskopf. Bicluster viewer: a visualization tool for analyzing gene expression data. In Advances in Visual Computing, pages 641–652. Springer, 2011.
[23]
N. Henry, J. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualization of social networks. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1302–1309, 2007.
[24]
I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in information visualization: A survey. Visualization and Computer Graphics, IEEE Transactions on, 6(1):24–43, 2000.
[25]
D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. Visualization and Computer Graphics, IEEE Transactions on, 12(5):741–748, 2006.
[26]
D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph visualization. In Computer Graphics Forum, volume 28, pages 983–990. Wiley Online Library, 2009.
[27]
F. Hughes and D. Schum. Discovery-proof-choice, the art and science of the process of intelligence analysis-preparing for the future of intelligence analysis. Washington, DC: Joint Military Intelligence College, 2003.
[28]
A. Inselberg and B. Dimsdale. Parallel coordinates. In Human-Machine Interactive Systems, pages 199–233. Springer, 1991.
[29]
Y. Jin, T. M. Murali, and N. Ramakrishnan. Compositional mining of multirelational biological datasets. ACM Transactions on Knowledge Discovery from Data, 2(1):1–35, Mar. 2008.
[30]
Y.-a. Kang, C. Gorg, and J. Stasko. Evaluating visual analytics systems for investigative analysis: Deriving design principles from a case study. In Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on, pages 139–146. IEEE, 2009.
[31]
M. Kapushesky, P. Kemmeren, A. C. Culhane, S. Durinck, J. Ihmels, C. Körner, M. Kull, A. Torrente, U. Sarkans, J. Vilo et al., Expression profiler: next generation-an online platform for analysis of microarray data. Nucleic acids research, 32 (suppl 2):W465–W470, 2004.
[32]
A. Lambert, R. Bourqui, and D. Auber. Winding Roads: Routing edges into bundles. Computer Graphics Forum, 29(3):853–862, Aug. 2010.
[33]
A. Lex, H. Schulz, M. Streit, C. Partl, and D. Schmalstieg. VisBricks: Multiform Visualization of Large, Inhomogeneous Data. IEEE Transactions on Visualization and Computer Graphics, 17(12):2291–2300, 2011.
[34]
A. Lex, M. Streit, C. Partl, K. Kashofer, and D. Schmalstieg. Comparative Analysis of Multidimensional, Quantitative Data. Visualization and Computer Graphics, IEEE Transactions on, 16(6):1027–1035, 2010.
[35]
I. Liiv. Seriation and matrix reordering methods: An historical overview. Statistical Analysis and Data Mining: The ASA Data Science Journal, 3(2):70–91, 2010.
[36]
S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey. tational Biology and Bioinformatics, IEEE/ACM Transactions on, 1(1):24–45, 2004.
[37]
T. Munzner. Visualization Analysis and Design. CRC Press, 2014.
[38]
C. Partl, A. Lex, M. Streit, H. Strobelt, A. M. Wassermann, H. Pfister, and D. Schmalstieg. ConTour: Data-Driven Exploration of Multi-Relational Datasets for Drug Discovery. Visualization and Computer Graphics, IEEE Transactions on, 20(12):1883–1892, 2014.
[39]
P. Pirolli and S. Card. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proceedings of international conference on intelligence analysis, volume 5, pages 2–4, 2005.
[40]
A. J. Pretorius and J. J. Van Wijk. Visual inspection of multivariate graphs. In Computer Graphics Forum, volume 27, pages 967–974. Wiley Online Library, 2008.
[41]
N. H. Riche and T. Dwyer. Untangling euler diagrams. IEEE Transactions on Visualization and Computer Graphics, 16(6):1090–1099, 2010.
[42]
P. Rodgers. A survey of euler diagrams. Journal of Visual Languages & Computing, 25(3):134–155, 2014.
[43]
R. Santamaría, R. Therón, and L. Quintales. Bicoverlapper 2.0: visual analysis for gene expression. Bioinformatics, page btu120, 2014.
[44]
L. Shi, Q. Liao, H. Tong, Y. Hu, Y. Zhao, and C. Lin. Hierarchical focus+ context heterogeneous network visualization. In Pacific Visualization Symposium (PacificVis), 2014 IEEE, pages 89–96. IEEE, 2014.
[45]
H. Siirtola and K.-J. Räihä. Interacting with parallel coordinates. Interacting with Computers, 18(6):1278–1309, 2006.
[46]
M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg. Context-Preserving Visual Links. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2249–2258, 2011.
[47]
M. Streit, S. Gratzl, M. Gillhofer, A. Mayr, A. Mitterecker, and S. Hochreiter. Furby: fuzzy force-directed bicluster visualization. BMC bioinformatics, 15 (Suppl 6):S4, 2014.
[48]
M. Sun, L. Bradel, C. L. North, and N. Ramakrishnan. The role of interactive biclusters in sensemaking. In Proceedings of the Conference on Human Factors in Computing Systems, pages 1559–1562. ACM, 2014.
[49]
M. Sun, C. North, and N. Ramakrishnan. A Five-Level Design Framework for Bicluster Visualizations. Visualization and Computer Graphics, IEEE Transactions on, 20(12):1713–1722, 2014.
[50]
A. Telea and O. Ersoy. Image-Based Edge Bundles: Simplified Visualization of Large Graphs. Computer Graphics Forum, 29(3):843-852, 2010.
[51]
T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for enumerating closed patterns in transaction databases. In Discovery Science, pages 16–31. Springer, 2004.
[52]
C. Viau and M. J. McGuffin. ConnectedCharts: Explicit Visualization of Relationships between Data Graphics. Computer Graphics Forum, 31 (3pt4):1285–1294, June 2012.
[53]
M. Waldner, W. Puff, A. Lex, M. Streit, and D. Schmalstieg. Visual links across applications. In Proceedings of Graphics Interface 2010, pages 129–136. Canadian Information Processing Society, 2010.
[54]
H. Wu, J. Vreeken, N. Tatti, and N. Ramakrishnan. Uncovering the plot: detecting surprising coalitions of entities in multi-relational schemas. Data Mining and Knowledge Discovery, 28 (5-6):1398-1428, 2014.
[55]
H.-M. Wu, Y.-J. Tien, and C.-h. Chen. Gap: A graphical environment for matrix visualization and cluster analysis. Computational Statistics & Data Analysis, 54(3):767–778, 2010.
[56]
M. J. Zaki and C.-J. Hsiao. Efficient algorithms for mining closed itemsets and their lattice structure. Knowledge and Data Engineering, IEEE Transactions on, 17(4):462–478, 2005.
[57]
H. Zhang, M. Sun, D. D. Yao, and C. North. Visualizing traffic causality for analyzing network anomalies. In Proceedings of the 2015 ACM International Workshop on International Workshop on Security and Privacy Analytics, pages 37–42. ACM, 2015.
[58]
H. Zhou, P. Xu, X. Yuan, and H. Qu. Edge bundling in information visualization. Tsinghua Science and Technology, 18(2):145–156, 2013.

Cited By

View all
  • (2024)Towards Efficient Visual Simplification of Computational Graphs in Deep Neural NetworksIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.323083230:7(3359-3373)Online publication date: 1-Jul-2024
  • (2022)Automatic Polygon Layout for Primal-Dual Visualization of HypergraphsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311475928:1(633-642)Online publication date: 1-Jan-2022
  • (2022)Towards Systematic Design Considerations for Visualizing Cross-View Data RelationshipsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.310296628:12(4741-4756)Online publication date: 1-Dec-2022
  • Show More Cited By

Index Terms

  1. BiSet: Semantic Edge Bundling with Biclusters for Sensemaking
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 22, Issue 1
      Jan. 2016
      1034 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 31 January 2016

      Author Tags

      1. semantic edge bundling
      2. Bicluster
      3. coordinated relationship

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 26 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Towards Efficient Visual Simplification of Computational Graphs in Deep Neural NetworksIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.323083230:7(3359-3373)Online publication date: 1-Jul-2024
      • (2022)Automatic Polygon Layout for Primal-Dual Visualization of HypergraphsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311475928:1(633-642)Online publication date: 1-Jan-2022
      • (2022)Towards Systematic Design Considerations for Visualizing Cross-View Data RelationshipsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.310296628:12(4741-4756)Online publication date: 1-Dec-2022
      • (2022)Understanding Missing Links in Bipartite Networks With MissBiNIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303298428:6(2457-2469)Online publication date: 1-Jun-2022
      • (2021)Overview of information visualization for business under the background of big dataProceedings of the 4th International Conference on Computer Science and Software Engineering10.1145/3494885.3494939(295-299)Online publication date: 22-Oct-2021
      • (2021)SightBi: Exploring Cross-View Data Relationships with BiclustersIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311480128:1(54-64)Online publication date: 24-Dec-2021
      • (2018)Interactive Discovery of Coordinated Relationship Chains with Maximum Entropy ModelsACM Transactions on Knowledge Discovery from Data10.1145/304701712:1(1-34)Online publication date: 31-Jan-2018
      • (2018)ViBr: Visualizing Bipartite Relations at Scale with the Minimum Description Length PrincipleIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286482625:1(321-330)Online publication date: 7-Dec-2018

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media