Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Survey on Visual Analysis of Event Sequence Data

Published: 01 December 2022 Publication History
  • Get Citation Alerts
  • Abstract

    Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities.

    References

    [1]
    D. Bhattacharjya, K. Shanmugam, T. Gao, N. Mattei, K. R. Varshney, and D. Subramanian, “Event-driven continuous time Bayesian networks,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 3259–3266.
    [2]
    M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner, “Timelines revisited: A design space and considerations for expressive storytelling,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 9, pp. 2151–2164, Sep. 2017.
    [3]
    N. Cao, D. Gotz, J. Sun, and H. Qu, “DICON: Interactive visual analysis of multidimensional clusters,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2581–2590, Dec. 2011.
    [4]
    N. Cao, Y.-R. Lin, F. Du, and D. Wang, “Episogram: Visual summarization of egocentric social interactions,” IEEE Comput. Graph. Appl., vol. 36, no. 5, pp. 72–81, Sep./Oct. 2016.
    [5]
    N. Cao, Y.-R. Lin, X. Sun, D. Lazer, S. Liu, and H. Qu, “Whisper: Tracing the spatiotemporal process of information diffusion in real time,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2649–2658, Dec. 2012.
    [6]
    N. Cao, C. Shi, S. Lin, J. Lu, Y.-R. Lin, and C.-Y. Lin, “TargetVue: Visual analysis of anomalous user behaviors in online communication systems,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 280–289, Jan. 2016.
    [7]
    B. C. M. Cappers and J. J. van Wijk, “Exploring multivariate event sequences using rules, aggregations, and selections,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 532–541, Jan. 2018.
    [8]
    D. Chankhihortet al., “A visualization scheme with a calendar heat map for abnormal pattern analysis in the manufacturing process,” Int. J. Contents, vol. 13, no. 2, pp. 21–28, 2017.
    [9]
    M. Chenet al., “From data analysis and visualization to causality discovery,” Computer, vol. 44, no. 10, pp. 84–87, Oct. 2011.
    [10]
    Q. Chen, Y. Chen, D. Liu, C. Shi, Y. Wu, and H. Qu, “PeakVizor: Visual analytics of peaks in video clickstreams from massive open online courses,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 10, pp. 2315–2330, Oct. 2016.
    [11]
    Q. Chenet al., “ViSeq: Visual analytics of learning sequence in massive open online courses,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 3, pp. 1622–1636, Mar. 2020.
    [12]
    S. Chen, S. Chen, Z. Wang, J. Liang, Y. Wu, and X. Yuan, “D-map+: Interactive visual analysis and exploration of ego-centric and event-centric information diffusion patterns in social media,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 1, pp. 1–26, 2019.
    [13]
    S. Chen, S. Li, S. Chen, and X. Yuan, “R-map: A map metaphor for visualizing information reposting process in social media,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 1204–1214, Jan. 2020.
    [14]
    Y. Chen, A. Puri, L. Yuan, and H. Qu, “StageMap: Extracting and summarizing progression stages in event sequences,” in Proc. IEEE Int. Conf. Big Data, 2018, pp. 975–981.
    [15]
    Y. Chen, P. Xu, and L. Ren, “Sequence synopsis: Optimize visual summary of temporal event data,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 45–55, Jan. 2018.
    [16]
    E. Choi, M. T. Bahadori, J. A. Kulas, A. Schuetz, W. F. Stewart, and J. Sun, “Retain: An interpretable predictive model for healthcare using reverse time attention mechanism,” in Proc. 30th Conf. Neural Inf. Process. Syst., 2016, pp. 3504–3512.
    [17]
    J. Choo and S. Liu, “Visual analytics for explainable deep learning,” IEEE Comput. Graph. Appl., vol. 38, no. 4, pp. 84–92, Jul./Aug. 2018.
    [18]
    A. Choudhryet al., “Once upon a time in visualization: Understanding the use of textual narratives for causality,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1332–1342, Feb. 2021.
    [19]
    K. A. Cook and J. J. Thomas, Illuminating the Path: The Research and Development Agenda for Visual Analytics. Los Alamitos, CA, USA: IEEE Computer Society, 2005.
    [20]
    T. N. Dang, P. Murray, J. Aurisano, and A. G. Forbes, “ReactionFlow: An interactive visualization tool for causality analysis in biological pathways,” BMC Proc., vol. 9, 2015, Art. no.
    [21]
    F. Du, S. Guo, S. Malik, E. Koh, S. Kim, and Z. Liu, “Interactive event sequence prediction for marketing analysts,” in Proc. Extended Abstr. CHI Conf. Hum. Factors Comput. Syst., 2020, pp. 1–8.
    [22]
    F. Du, C. Plaisant, N. Spring, and B. Shneiderman, “EventAction: Visual analytics for temporal event sequence recommendation,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2016, pp. 61–70.
    [23]
    F. Du, C. Plaisant, N. Spring, and B. Shneiderman, “Finding similar people to guide life choices: Challenge, design, and evaluation,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2017, pp. 5498–5544.
    [24]
    F. Du, C. Plaisant, N. Spring, and B. Shneiderman, “Visual interfaces for recommendation systems: Finding similar and dissimilar peers,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 1, pp. 1–23, 2019.
    [25]
    F. Du, B. Shneiderman, C. Plaisant, S. Malik, and A. Perer, “Coping with volume and variety in temporal event sequences: Strategies for sharpening analytic focus,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 6, pp. 1636–1649, Jun. 2017.
    [26]
    N. Elmqvist and P. Tsigas, “Growing squares: Animated visualization of causal relations,” in Proc. ACM Symp. Softw. Vis., 2003, pp. 17–ff.
    [27]
    N. Elmqvist and P. Tsigas, “Animated visualization of causal relations through growing 2D geometry,” Inf. Vis., vol. 3, no. 3, pp. 154–172, 2004.
    [28]
    J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman, “A visual interface for multivariate temporal data: Finding patterns of events across multiple histories,” in Proc. IEEE Symp. Vis. Analytics Sci. Technol., 2006, pp. 167–174.
    [29]
    X. Fanet al., “A personal visual analytics on smartphone usage data,” J. Vis. Lang. Comput., vol. 41, pp. 111–120, 2017.
    [30]
    F. Fischer, J. Fuchs, P.-A. Vervier, F. Mansmann, and O. Thonnard, “VisTracer: A visual analytics tool to investigate routing anomalies in traceroutes,” in Proc. VizSec Symp. Vis. Cyber Secur., 2012, pp. 80–87.
    [31]
    L. Franklin, C. Plaisant, K. M. Rahman, and B. Shneiderman, “TreatmentExplorer: An interactive decision aid for medical risk communication and treatment exploration,” Interacting Comput., vol. 28, no. 3, pp. 238–252, May 2016.
    [32]
    D. Gotz and H. Stavropoulos, “DecisionFlow: Visual analytics for high-dimensional temporal event sequence data,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1783–1792, Dec. 2014.
    [33]
    D. Gotz, S. Sun, and N. Cao, “Adaptive contextualization: Combating bias during high-dimensional visualization and data selection,” in Proc. 21st Int. Conf. Intell. User Interfaces, 2016, pp. 85–95.
    [34]
    D. Gotz, J. Zhang, W. Wang, J. Shrestha, and D. Borland, “Visual analysis of high-dimensional event sequence data via dynamic hierarchical aggregation,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 440–450, Jan. 2020.
    [35]
    M. C. Gouldenet al., “CCVis: Visual analytics of student online learning behaviors using course clickstream data,” Electron. Imag., vol. 2019, 2019, Art. no.
    [36]
    R. Guoet al., “Comparative visual analytics for assessing medical records with sequence embedding,” Vis. Inform., vol. 4, pp. 72–85, 2020.
    [37]
    S. Guoet al., “Visualizing uncertainty and alternatives in event sequence predictions,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2019, pp. 1–12.
    [38]
    S. Guo, Z. Jin, Q. Chen, D. Gotz, H. Zha, and N. Cao, “Visual anomaly detection in event sequence data,” in Proc. IEEE Int. Conf. Big Data, 2019, pp. 1125–1130.
    [39]
    S. Guo, Z. Jin, D. Gotz, F. Du, H. Zha, and N. Cao, “Visual progression analysis of event sequence data,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 417–426, Jan. 2019.
    [40]
    S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao, “EventThread: Visual summarization and stage analysis of event sequence data,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 56–65, Jan. 2018.
    [41]
    Y. Han, A. Rozga, N. Dimitrova, G. D. Abowd, and J. Stasko, “Visual analysis of proximal temporal relationships of social and communicative behaviors,” Comput. Graph. Forum, vol. 34, pp. 51–60, 2015.
    [42]
    H. He, B. Dong, Q. Zheng, and G. Li, “VUC: Visualizing daily video utilization to promote student engagement in online distance education,” in Proc. ACM Conf. Glob. Comput. Educ., 2019, pp. 99–105.
    [43]
    D. Herr, F. Beck, and T. Ertl, “Visual analytics for decomposing temporal event series of production lines,” in Proc. 22nd Int. Conf. Inf. Visualisation (IV), 2018, pp. 251–259.
    [44]
    M. A. Hibbs, N. C. Dirksen, K. Li, and O. G. Troyanskaya, “Visualization methods for statistical analysis of microarray clusters,” BMC Bioinf., vol. 6, no. 1, 2005, Art. no.
    [45]
    O. Huisman and P. Forer, “The complexities of everyday life: balancing practical and realistic approaches to modeling probable presence in space-time,” in Proc. 17th Annu. Colloq. Spatial Inf. Res. Centre, 2005, pp. 155–168.
    [46]
    G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R, vol. 112. New York, NY, USA: Springer, 2013.
    [47]
    W. Jentner and D. A. Keim, “Visualization and visual analytic techniques for patterns,” in Proc. High-Utility Pattern Mining, 2019, pp. 303–337.
    [48]
    Z. Jin, S. Cui, S. Guo, D. Gotz, J. Sun, and N. Cao, “CarePre: An intelligent clinical decision assistance system,” ACM Trans. Comput. Healthcare, vol. 1, no. 1, pp. 1–20, 2020.
    [49]
    Z. Jin, S. Guo, N. Chen, D. Weiskopf, D. Gotz, and N. Cao, “Visual causality analysis of event sequence data,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1343–1352, Feb. 2021.
    [50]
    J. Jo, J. Huh, J. Park, B. Kim, and J. Seo, “LiveGantt: Interactively visualizing a large manufacturing schedule,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2329–2338, Dec. 2014.
    [51]
    N. R. Kadaba, P. P. Irani, and J. Leboe, “Visualizing causal semantics using animations,” IEEE Trans. Vis. Comput. Graph., vol. 13, no. 6, pp. 1254–1261, Nov./Dec. 2007.
    [52]
    S. Kandelet al., “Research directions in data wrangling: Visualizations and transformations for usable and credible data,” Inf. Vis., vol. 10, no. 4, pp. 271–288, 2011.
    [53]
    D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon, “Visual analytics: Definition, process, and challenges,” in Proc. Inf. Vis., 2008, pp. 154–175.
    [54]
    J. Kiernan and E. Terzi, “Constructing comprehensive summaries of large event sequences,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 4, 2009, Art. no.
    [55]
    B. Koldehofe, M. Papatriantafilou, and P. Tsigas, “Distributed algorithms visualisation for educational purposes,” in Proc. 4th Annu. SIGCSE/SIGCUE Conf. Innov. Technol. Comput. Sci. Educ., 1999, pp. 103–106.
    [56]
    J. Krause, A. Perer, and K. Ng, “Interacting with predictions: Visual inspection of black-box machine learning models,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2016, pp. 5686–5697.
    [57]
    J. Krause, A. Perer, and H. Stavropoulos, “Supporting iterative cohort construction with visual temporal queries,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 91–100, Jan. 2016.
    [58]
    M.-P. Kwan, “Gender and individual access to urban opportunities: A study using space–time measures,” Professional Geographer, vol. 51, no. 2, pp. 210–227, 1999.
    [59]
    B. C. Kwonet al., “DPVis: Visual analytics with hidden Markov models for disease progression pathways,” IEEE Trans. Vis. Comput. Graph., to be published.
    [60]
    B. C. Kwonet al., “RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 299–309, Jan. 2019.
    [61]
    B. C. Kwon, J. Verma, and A. Perer, “Peekquence: Visual analytics for event sequence data,” in Proc. ACM Workshop Interactive Data Exploration Analytics, 2016, pp.1–4.
    [62]
    P.-M. Law, Z. Liu, S. Malik, and R. C. Basole, “MAQUI: Interweaving queries and pattern mining for recursive event sequence exploration,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 396–406, Jan. 2019.
    [63]
    W. Li, M. Funk, Q. Li, and A. Brombacher, “Visualizing event sequence game data to understand player's skill growth through behavior complexity,” J. Vis., vol. 22, no. 4, pp. 833–850, 2019.
    [64]
    Z. Liu, H. Dev, M. Dontcheva, and M. Hoffman, “Mining, pruning and visualizing frequent patterns for temporal event sequence analysis,” in Proc. IEEE VIS Workshop Temporal Sequential Event Anal., 2016, pp. 2–4.
    [65]
    Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, and A. Wilson, “CoreFlow: Extracting and visualizing branching patterns from event sequences,” Comput. Graph. Forum, vol. 36, pp. 527–538, 2017.
    [66]
    Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wilson, “Patterns and sequences: Interactive exploration of clickstreams to understand common visitor paths,” IEEE Trans. Vis. Comput. Graph., 2vol. 23, no. 1, pp. 321–330, Jan. 2017.
    [67]
    S. Malik, F. Du, M. Monroe, E. Onukwugha, C. Plaisant, and B. Shneiderman, “Cohort comparison of event sequences with balanced integration of visual analytics and statistics,” in Proc. 20th Int. Conf. Intell. User Interfaces, 2015, pp. 38–49.
    [68]
    S. Malik, B. Shneiderman, F. Du, C. Plaisant, and M. Bjarnadottir, “High-volume hypothesis testing: Systematic exploration of event sequence comparisons,” ACM Trans. Interactive Intell. Syst., vol. 6, no. 1, pp. 1–23, 2016.
    [69]
    H. Mei and J. M. Eisner, “The neural hawkes process: A neurally self-modulating multivariate point process,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6757–6767.
    [70]
    A. Michotte, G. Thines, A. Costall, and G. Butterworth, “La causalité perceptive” J. de Psychologie Normale Et Pathologique, vol. 60, pp. 9–36, 1963.
    [71]
    Y. Minget al., “Understanding hidden memories of recurrent neural networks,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2017, pp. 13–24.
    [72]
    M. Monroe, “Interactive event sequence query and transformation,” Ph.D. dissertation, Univ. Maryland, College Park, USA, 2014.
    [73]
    X. Mu, K. Xu, Q. Chen, F. Du, Y. Wang, and H. Qu, “MOOCad: Visual analysis of anomalous learning activities in massive open online courses,” in Proc. EuroVis, 2019, pp. 91–95.
    [74]
    C. Muelder, B. Zhu, W. Chen, H. Zhang, and K.-L. Ma, “Visual analysis of cloud computing performance using behavioral lines,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 6, pp. 1694–1704, Jun. 2016.
    [75]
    K. Ng, A. Ghoting, S. R. Steinhubl, W. F. Stewart, B. Malin, and J. Sun, “PARAMO: A PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records,” J. Biomed. Inform., 48:160–170, 2014.
    [76]
    P. H. Nguyenet al., “VASABI: Hierarchical user profiles for interactive visual user behaviour analytics,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 77–86, Jan. 2020.
    [77]
    P. H. Nguyen, C. Turkay, G. Andrienko, N. Andrienko, O. Thonnard, and J. Zouaoui, “Understanding user behaviour through action sequences: From the usual to the unusual,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 9, pp. 2838–2852, Sep. 2019.
    [78]
    C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones, “ABySS-explorer: Visualizing genome sequence assemblies,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 881–888, Nov./Dec. 2009.
    [79]
    A. Perer and D. Gotz, “Data-driven exploration of care plans for patients,” in Proc. Extended Abstr. Hum. Factors Comput. Syst., 2013, pp. 439–444.
    [80]
    A. Perer and J. Sun, “MatrixFlow: Temporal network visual analytics to track symptom evolution during disease progression,” in Proc. AMIA Annu. Symp. Proc., 2012, pp. 716–725.
    [81]
    A. Perer and F. Wang, “Frequence: Interactive mining and visualization of temporal frequent event sequences,” in Proc. 19th Int. Conf. Intell. User Interfaces, 2014, pp. 153–162.
    [82]
    A. Perer, F. Wang, and J. Hu, “Mining and exploring care pathways from electronic medical records with visual analytics,” J. Biomed. Inform., vol. 56, pp. 369–378, 2015.
    [83]
    C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman, “LifeLines: Visualizing personal histories,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 1996, pp. 221–227.
    [84]
    C. Plaisant and B. Shneiderman, “The diversity of data and tasks in event analytics,” in Proc. IEEE VIS Workshop Temporal Sequential Event Anal., 2016, pp.1–4.
    [85]
    P. J. Polack, S.-T. Chen, M. Kahng, M. Sharmin, and D. H. Chau, “TimeStitch: Interactive multi-focus cohort discovery and comparison,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2015, pp. 209–210.
    [86]
    P. J. Polack Jr.et al., “Chronodes: Interactive multifocus exploration of event sequences,” ACM Trans. Interactive Intell. Syst., vol. 8, no. 1, pp. 1–21, 2018.
    [87]
    J. Qi, V. Bloemen, S. Wang, J. van Wijk, and H. van de Wetering, “STBins: Visual tracking and comparison of multiple data sequences using temporal binning,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 1054–1063, Jan. 2020.
    [88]
    P. Riehmann, M. Hanfler, and B. Froehlich, “Interactive sankey diagrams,” in Proc. IEEE Symp. Inf. Vis., 2005, pp. 233–240.
    [89]
    A. Rindet al., “Interactive information visualization to explore and query electronic health records,” Found. Trends Hum.-Comput. Interact., vol. 5, no. 3, pp. 207–298, 2013.
    [90]
    A. C. Robinson, D. J. Peuquet, S. Pezanowski, F. A. Hardisty, and B. Swedberg, “Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal event data,” Cartography Geographic Inf. Sci., vol. 44, no. 3, pp. 216–228, 2017.
    [91]
    J. Rogers, N. Spina, A. Neese, R. Hess, D. Brodke, and A. Lex, “Composer –Visual cohort analysis of patient outcomes,” Appl. Clin. Inform., vol. 10, no. 2, pp. 278–285, 2019.
    [92]
    P. Rosenthal, L. Pfeiffer, N. H. Müller, and P. Ohler, “VisRuption: Intuitive and efficient visualization of temporal airline disruption data,” Computer Graphics Forum, vol. 32, pp. 81–90, 2013.
    [93]
    J. Rzeszotarski and A. Kittur, “CrowdScape: Interactively visualizing user behavior and output,” in Proc. 25th Annu. ACM Symp. User Interface Softw. Technol., 2012, pp. 55–62.
    [94]
    D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis, and D. A. Keim, “The role of uncertainty, awareness, and trust in visual analytics,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 240–249, Jan. 2016.
    [95]
    P. Saraiya, C. North, and K. Duca, “An evaluation of microarray visualization tools for biological insight,” in Proc. IEEE Symp. Inf. Vis., 2004, pp. 1–8.
    [96]
    A. Sarikaya, M. Correll, J. M. Dinis, D. H. O’Connor, and M. Gleicher, “Visualizing co-occurrence of events in populations of viral genome sequences,” Comput. Graph. Forum, vol. 35, pp. 151–160, 2016.
    [97]
    P. Seninet al., “Time series anomaly discovery with grammar-based compression,” in Proc. 18th Int. Conf. Extending Database Technol., 2015, pp. 481–492.
    [98]
    J. Seo and B. Shneiderman, “Interactively exploring hierarchical clustering results,” Computer, vol. 35, no. 7, pp. 80–86, Jul. 2002.
    [99]
    Y. Shi, Y. Liu, H. Tong, J. He, G. Yan, and N. Cao, “Visual analytics of anomalous user behaviors: A survey,” IEEE Trans. Big Data, to be published.
    [100]
    B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Proc. IEEE Symp. Vis. Lang., 1996, pp. 336–343.
    [101]
    B. Shneiderman and C. Plaisant, “Interactive visual event analytics: Opportunities and challenges,” Computer, vol. 52, no. 1, pp. 27–35, Jan. 2019.
    [102]
    J. Slack, K. Hildebrand, T. Munzner, and K. S. John, “SequenceJuxtaposer: Fluid navigation for large-scale sequence comparison in context,” in Proc. German Conf. Bioinf., 2004, pp. 37–42.
    [103]
    L. Stopar, P. Skraba, M. Grobelnik, and D. Mladenic, “StreamStory: Exploring multivariate time series on multiple scales,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 4, pp. 1788–1802, Apr. 2019.
    [104]
    H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 667–676, Jan. 2018.
    [105]
    D. Sunet al., “PlanningVis: A visual analytics approach to production planning in smart factories,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 579–589, Jan. 2020.
    [106]
    G. Sun, T. Tang, T.-Q. Peng, R. Liang, and Y. Wu, “SocialWave: Visual analysis of spatio-temporal diffusion of information on social media,” ACM Trans. Intell. Syst. Technol., vol. 9, no. 2, pp. 1–23, 2017.
    [107]
    G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu, “A survey of visual analytics techniques and applications: State-of-the-art research and future challenges,” J. Comput. Sci. Technol., vol. 28, no. 5, pp. 852–867, 2013.
    [108]
    J. Trümper, A. Telea, and J. Döllner, “ViewFusion: Correlating structure and activity views for execution traces,” in Proc. Theory Prac. Comput. Graph., 2012, pp. 45–52.
    [109]
    F. Viégaset al., “Google+ ripples: A native visualization of information flow,” in Proc. 22nd Int. World Wide Web Conf., 2013, pp. 1389–1398.
    [110]
    K. Vrotsou, “Everyday mining: Exploring sequences in event-based data,” Doctoral thesis, Linköping University Electronic Press, Linköping, Sweden, 2010.
    [111]
    K. Vrotsou, J. Johansson, and M. Cooper, “ActiviTree: Interactive visual exploration of sequences in event-based data using graph similarity,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 945–952, Nov./Dec. 2009.
    [112]
    G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao, “Unsupervised clickstream clustering for user behavior analytics,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2016, pp. 225–236.
    [113]
    J. Wang and K. Mueller, “The visual causality analyst: An interactive interface for causal reasoning,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 230–239, Jan. 2016.
    [114]
    J. Wang and K. Mueller, “Visual causality analysis made practical,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2017, pp. 151–161.
    [115]
    T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, S. Murphy, and B. Shneiderman, “Aligning temporal data by sentinel events: discovering patterns in electronic health records,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2008, pp. 457–466.
    [116]
    T. D. Wanget al., “Temporal summaries: Supporting temporal categorical searching, aggregation and comparison,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 1049–1056, Nov./Dec. 2009.
    [117]
    X. Wang, W. Dou, W. Ribarsky, and R. Chang, “Visualization as integration of heterogeneous processes,” in Proc. SPIE Vis. Analytics Homeland Defense Secur., 2009, p. 73460B.
    [118]
    J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma, “Visual cluster exploration of web clickstream data,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2012, pp. 3–12.
    [119]
    K. Wongsuphasawat and D. Gotz, “Outflow: Visualizing patient flow by symptoms and outcome,” in Proc. IEEE VisWeek Workshop Vis. Analytics Healthcare, 2011, pp. 25–28.
    [120]
    K. Wongsuphasawat and D. Gotz, “Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2659–2668, Dec. 2012.
    [121]
    K. Wongsuphasawat, J. A. G. Gómez, C. Plaisant, T. D. Wang, M. Taieb-Maimon, and B. Shneiderman, “Lifeflow: Visualizing an overview of event sequences,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2011, pp. 1747–1756.
    [122]
    K. Wongsuphasawat and B. Shneiderman, “Finding comparable temporal categorical records: A similarity measure with an interactive visualization,” in Proc. IEEE Symp. Vis. Analytics Sci. Technol., 2009, pp. 27–34.
    [123]
    W. Wu, Y. Zheng, K. Chen, X. Wang, and N. Cao, “A visual analytics approach for equipment condition monitoring in smart factories of process industry,” in Proc. IEEE Pacific Vis. Symp., 2018, pp. 140–149.
    [124]
    Y. Wu, N. Cao, D. Gotz, Y.-P. Tan, and D. A. Keim, “A survey on visual analytics of social media data,” IEEE Trans. Multimedia, vol. 18, no. 11, pp. 2135–2148, Nov. 2016.
    [125]
    Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu, “OpinionFlow: Visual analysis of opinion diffusion on social media,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1763–1772, Dec. 2014.
    [126]
    C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for the detection of anomalous call stack trees in high performance computing applications,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 215–224, Jan. 2019.
    [127]
    X. Xie, F. Du, and Y. Wu, “A visual analytics approach for exploratory causal analysis: Exploration, validation, and applications,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1448–1458, Feb. 2021.
    [128]
    H. Xu, M. Farajtabar, and H. Zha, “Learning granger causality for hawkes processes,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1717–1726.
    [129]
    K. Xuet al., “CloudDet: Interactive visual analysis of anomalous performances in cloud computing systems,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 1107–1117, Jan. 2020.
    [130]
    P. Xu, H. Mei, L. Ren, and W. Chen, “ViDX: Visual diagnostics of assembly line performance in smart factories,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 291–300, Jan. 2017.
    [131]
    H. Yu, “Spatio-temporal GIS design for exploring interactions of human activities,” Cartography Geographic Inf. Sci., vol. 33, no. 1, pp. 3–19, 2006.
    [132]
    X. Yuan, Z. Wang, Z. Liu, C. Guo, H. Ai, and D. Ren, “Visualization of social media flows with interactively identified key players,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2014, pp. 291–292.
    [133]
    E. Zgraggen, S. M. Drucker, D. Fisher, and R. DeLine, “(S Qu) eries: Visual regular expressions for querying and exploring event sequences|,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2015, pp. 2683–2692.
    [134]
    W. Zhang, T. K. Panum, S. Jha, P. Chalasani, and D. Page, “Cause: Learning granger causality from event sequences using attribution methods,” 2020,.
    [135]
    Y. Zhang, K. Chanana, and C. Dunne, “IDMVis: Temporal event sequence visualization for type 1 diabetes treatment decision support,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 512–522, Jan. 2019.
    [136]
    Z. Zhang, D. Gotz, and A. Perer, “Iterative cohort analysis and exploration,” Inf. Vis., vol. 14, no. 4, pp. 289–307, 2015.
    [137]
    Z. Zhang, K. T. McDonnell, E. Zadok, and K. Mueller, “Visual correlation analysis of numerical and categorical data on the correlation map,” IEEE Trans. Vis. Comput. Graph., vol. 21, no. 2, pp. 289–303, Feb. 2015.
    [138]
    J. Zhao, N. Cao, Z. Wen, Y. Song, Y.-R. Lin, and C. Collins, “# FluxFlow: Visual analysis of anomalous information spreading on social media,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1773–1782, Dec. 2014.
    [139]
    J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson, “MatrixWave: Visual comparison of event sequence data,” in Proc. 33rd Annu. ACM Conf. Hum. Factors Comput. Syst., 2015, pp. 259–268.
    [140]
    F. Zhouet al., “A survey of visualization for smart manufacturing,” J. Vis., vol. 22, no. 2, pp. 419–435, 2019.
    [141]
    F. Zhouet al., “Visually enhanced situation awareness for complex manufacturing facility monitoring in smart factories,” J. Vis. Lang. Comput., vol. 44, pp. 58–69, 2018.

    Cited By

    View all
    • (2024)Talk2Data: A Natural Language Interface for Exploratory Visual Analysis via Question DecompositionACM Transactions on Interactive Intelligent Systems10.1145/364389414:2(1-24)Online publication date: 7-Feb-2024
    • (2024)BPCoach: Exploring Hero Drafting in Professional MOBA Tournaments via Visual AnalyticsProceedings of the ACM on Human-Computer Interaction10.1145/36373038:CSCW1(1-31)Online publication date: 26-Apr-2024
    • (2024)UserJourney2Vector: Enterprise Application of Transformer Models on User Telemetry DataExtended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613905.3637134(1-7)Online publication date: 11-May-2024
    • Show More Cited By

    Index Terms

    1. Survey on Visual Analysis of Event Sequence Data
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 28, Issue 12
      Dec. 2022
      1222 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 01 December 2022

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Jul 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Talk2Data: A Natural Language Interface for Exploratory Visual Analysis via Question DecompositionACM Transactions on Interactive Intelligent Systems10.1145/364389414:2(1-24)Online publication date: 7-Feb-2024
      • (2024)BPCoach: Exploring Hero Drafting in Professional MOBA Tournaments via Visual AnalyticsProceedings of the ACM on Human-Computer Interaction10.1145/36373038:CSCW1(1-31)Online publication date: 26-Apr-2024
      • (2024)UserJourney2Vector: Enterprise Application of Transformer Models on User Telemetry DataExtended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613905.3637134(1-7)Online publication date: 11-May-2024
      • (2024)Marjorie: Visualizing Type 1 Diabetes Data to Support Pattern ExplorationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332693630:1(1216-1226)Online publication date: 1-Jan-2024
      • (2024)Leveraging Historical Medical Records as a Proxy via Multimodal Modeling and Visualization to Enrich Medical Diagnostic LearningIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332692930:1(1238-1248)Online publication date: 1-Jan-2024
      • (2024)A survey of approaches for event sequence analysis and visualizationInformation Systems10.1016/j.is.2023.102283120:COnline publication date: 1-Feb-2024
      • (2023)Exploring Millions of User Interactions with ICEBOAT: Big Data Analytics for Automotive User InterfacesProceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications10.1145/3580585.3607158(81-92)Online publication date: 18-Sep-2023
      • (2023)DOMINO: Visual Causal Reasoning With Time-Dependent PhenomenaIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.320792929:12(5342-5356)Online publication date: 1-Dec-2023
      • (2023)WarehouseLens: visualizing and exploring turnover events of digital warehouseJournal of Visualization10.1007/s12650-023-00913-726:4(977-998)Online publication date: 1-Aug-2023
      • (2023)Representation and analysis of time-series data via deep embedding and visual explorationJournal of Visualization10.1007/s12650-022-00890-326:3(593-610)Online publication date: 1-Jun-2023
      • Show More Cited By

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media