Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Wasserstein Distances, Geodesics and Barycenters of Merge Trees

Published: 01 January 2022 Publication History

Abstract

This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the $L$2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [110] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach - with barycenter computations in the orders of minutes for the largest examples - as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking, temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.

References

[1]
ISO/IEC Guide 98–3:2008 uncertainty of measurement - part 3: Guide to the expression of uncertainty in measurement (GUM). 2008.
[2]
A. Acharya and V. Natarajan. A parallel and memory efficient algorithm for constructing the contour tree. In IEEE PV, 2015.
[3]
H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville, C. Peterson, P. Shipman, and L. Ziegelmeier. Persistence Images: A Stable Vector Representation of Persistent Homology. Journal of Machine Learning Research, 2017.
[4]
K. Anderson, J. Anderson, S. Palande, and B. Wang. Topological data analysis of functional MRI connectivity in time and space domains. In MICCAI Workshop on Connectomics in NeuroImaging, 2018.
[5]
T. Athawale and A. Entezari. Uncertainty quantification in linear interpolation for isosurface extraction. IEEE TVCG, 2013.
[6]
T. Athawale and C. R. Johnson. Probabilistic asymptotic decider for topological ambiguity resolution in level-set extraction for uncertain 2d data. IEEE TVCG, 2019.
[7]
T. Athawale, E. Sakhaee, and A. Entezari. Isosurface visualization of data with nonparametric models for uncertainty. IEEE TVCG, 2016.
[8]
T. M. Athawale, D. Maljovec, C. R. Johnson, V. Pascucci, and B. Wang. Uncertainty visualization of 2d morse complex ensembles using statistical summary maps. CoRR, abs/1912.06341, 2019.
[9]
U. Ayachit, A. C. Bauer, B. Geveci, P. O'Leary, K. Moreland, N. Fabian, and J. Mauldin. Paraview catalyst: Enabling in situ data analysis and visualization. In ISAV, 2015.
[10]
T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. The American Mathematical Monthly, 1970.
[11]
A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland, P. O'Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel. In-situ methods, infrastructures, and applications on high performance computing platforms. CGF, 2016.
[12]
U. Bauer, X. Ge, and Y. Wang. Measuring distance between Reeb graphs. In SoCG, 2014.
[13]
U. Bauer, M. Kerber, and J. Reininghaus. Distributed computation of persistent homology. In Algorithm Engineering and Experiments, 2014.
[14]
K. Beketayev, D. Yeliussizov, D. Morozov, G. H. Weber, and B. Hamann. Measuring the distance between merge trees. In TopoInVis. 2014.
[15]
D. P. Bertsekas. A new algorithm for the assignment problem. Mathematical Programming, 1981.
[16]
H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P.-T. Bremer. Topoms: Comprehensive topological exploration for molecular and condensed-matter systems. J. of Computational Chemistry, 2018.
[17]
H. Bhatia, S. Jadhav, P. Bremer, G. Chen, J. A. Levine, L. G. Nonato, and V. Pascucci. Flow visualization with quantified spatial and temporal errors using edge maps. IEEE TVCG, 2012.
[18]
S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. TCS, 2008.
[19]
T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet, P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe, P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai, M. Soler, P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An Overview of the Topology ToolKit. In TopoInVis, 2019.
[20]
A. Bock, H. Doraiswamy, A. Summers, and C. T. Silva. TopoAngler: Interactive Topology-Based Extraction of Fishes. IEEE TVCG, 2018.
[21]
G. Bonneau, H. Hege, C. Johnson, M. Oliveira, K. Potter, P. Rheingans, and T. Schultz. “Overview and state-of-the-art of uncertainty visualization. Mathematics and Visualization, 37:3–27, 2014.
[22]
P. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A Multi-Resolution Data Structure for 2-Dimensional Morse Functions. In Proc. of IEEE VIS, 2003.
[23]
P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Interactive exploration and analysis of large scale simulations using topology-based data segmentation. IEEE TVCG, 2011.
[24]
P. Bubenik. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res., 2015.
[25]
H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In Symp. on Dis. Alg., 2000.
[26]
H. A. Carr, J. Snoeyink, and M. van de Panne. Simplifying Flexible Isosurfaces Using Local Geometric Measures. In IEEE VIS, 2004.
[27]
H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak pruning for scalable SMP contour tree computation. In LDAV, 2016.
[28]
M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl., 2013.
[29]
L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse complexes for shape segmentation and homological analysis: discrete models and algorithms. CGF, 2015.
[30]
P. Diggle, P. Heagerty, K.-Y. Liang, and S. Zeger. The Analysis of Longitudinal Data. Oxford University Press, 2002.
[31]
H. Doraiswamy and V. Natarajan. Computing reeb graphs as a union of contour trees. IEEE TVCG, 2013.
[32]
H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathematical Society, 2009.
[33]
H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-smale complexes for piecewise linear 3-manifolds. In SoCG, 2003.
[34]
H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse complexes for piecewise linear 2-manifolds. In SoCG, 2001.
[35]
H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse- Smale complexes for piecewise linear 2-manfiolds. DCG, 2003.
[36]
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. DCG, 2002.
[37]
H. Edelsbrunner and E. P. Mucke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM ToG, 1990.
[38]
C. Elkan. Using the triangle inequality to accelerate k-means. In ICML, 2003.
[39]
G. Favelier, N. Faraj, B. Summa, and J. Tierny. Persistence Atlas for Critical Point Variability in Ensembles. IEEE TVCG (IEEE VIS), 2018.
[40]
G. Favelier, C. Gueunet, and J. Tierny. Visualizing ensembles of viscous fingers. In IEEE SciVis Contest, 2016.
[41]
D. Feng, B. Hentschel, S. Griessbach, L. Hoffmann, and M. von Hobe. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2014/, 2014.
[42]
F. Ferstl, K. Bürger, and R. Westermann. Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE TVCG, 2016.
[43]
F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann. Visual analysis of spatial variability and global correlations in ensembles of iso-contours. CGF, 2016.
[44]
R. Forman. A User's Guide to Discrete Morse Theory. AM, 1998.
[45]
C. Garth, B. Geveci, B. Hentschel, J. Kuhnert, I. Michel, T.-M. Rhyne, and S. Schröder. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2016/, 2016.
[46]
E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and Y. Wang. Intrinsic interleaving distance for merge trees. CoRR, 1908.00063, 2019.
[47]
D. Guenther, R. Alvarez-Boto, J. Contreras-Garcia, J.-P. Piquemal, and J. Tierny. Characterizing molecular interactions in chemical systems. IEEE TVCG (IEEE VIS), 2014.
[48]
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented Contour Trees with Fibonacci Heaps. IEEE TPDS, 2019.
[49]
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented Reeb Graphs with Dynamic ST-Trees. In EGPGV, 2019.
[50]
D. Günther, J. Salmon, and J. Tierny. Mandatory critical points of 2D uncertain scalar fields. CGF, 2014.
[51]
A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci. Stability of dissipation elements: A case study in combustion. CGF, 2014.
[52]
A. Gyulassy, P. Bremer, and V. Pascucci. Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy. IEEE TVCG (IEEE VIS), 2018.
[53]
A. Gyulassy, M. A. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, and B. Hamann. Topologically clean distance fields. IEEE TVCG (IEEE VIS), 2007.
[54]
A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer, M. Papka, L. A. Curtiss, and V. Pascucci. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials. IEEE TVCG, 2015.
[55]
C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based methods in visualization. CGF, 2016.
[56]
B. Hentschel, B. Geveci, M. Turk, and S. Skillman. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2015/, 2015.
[57]
M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3d shapes. In ACM SIGGRAPH, 2001.
[58]
M. Hummel, H. Obermaier, C. Garth, and K. I. Joy. Comparative visual analysis of lagrangian transport in CFD ensembles. IEEE TVCG, 2013.
[59]
C. R. Johnson and A. R. Sanderson. A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Applications, 2003.
[60]
L. Kantorovich. On the translocation of masses. AS URSS, 1942.
[61]
J. Kasten, J. Reininghaus, I. Hotz, and H. Hege. Two-dimensional time-dependent vortex regions based on the acceleration magnitude. IEEE TVCG, 2011.
[62]
M. Kerber, D. Morozov, and A. Nigmetov. Geometry helps to compare persistence diagrams. ACM Journal of Experimental Algorithmics, 2016.
[63]
M. Kraus. Visualization of uncertain contour trees. In IVTA, 2010.
[64]
T. Lacombe, M. Cuturi, and S. Oudot. Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport. In NIPS, 2018.
[65]
D. E. Laney, P. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE TVCG (IEEE VIS), 2006.
[66]
T. Liebmann and G. Scheuermann. Critical points of gaussian-distributed scalar fields on simplicial grids. CGF, 2016.
[67]
S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982.
[68]
A. P. Lohfink, F. Wetzels, J. Lukasczyk, G. H. Weber, and C. Garth. Fuzzy contour trees: Alignment and joint layout of multiple contour trees. CGF, 2020.
[69]
S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel algorithm for computing and tracking level set topology. In Proc. of HiPC, 2012.
[70]
A. Maceachren, A. Robinson, S. Hopper, S. Gardner, R. Murray, M. Gahegan, and E. Hetzler. Visualizing geospatial information uncertainty: What we know and what we need to know. CGIS, 2005.
[71]
D. Maljovec, B. Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, and V. Pascucci. Topology-inspired partition-based sensitivity analysis and visualization of nuclear simulations. In IEEE PV, 2016.
[72]
M. Mirzargar, R. Whitaker, and R. Kirby. Curve boxplot: Generalization of boxplot for ensembles of curves. IEEE TVCG, 2014.
[73]
G. Monge. Mémoire sur la théorie des déblais et des remblais. Académic Royale des Sciences de Paris, 1781.
[74]
D. Morozov, K. Beketayev, and G. H. Weber. Interleaving distance between merge trees. In TopoInVis. 2014.
[75]
J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics, 1957.
[76]
M. Olejniczak, A. S. P. Gomes, and J. Tierny. A Topological Data Analysis Perspective on Non-Covalent Interactions in Relativistic Calculations. International Journal of Quantum Chemistry, 2019.
[77]
K. Olsen, S. Day, B. Minster, R. Moore, Y. Cui, A. Chourasia, M. Thiebaux, H. Francoeur, P. Maechling, S. Cutchin, and K. Nunes. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2006/, 2006.
[78]
M. Otto, T. Germer, H.-C. Hege, and H. Theisel. Uncertain 2D vector field topology. 2010.
[79]
M. Otto, T. Germer, and H. Theisel. Uncertain topology of 3D vector fields. IEEE PV, 2011.
[80]
A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approaches to uncertainty visualization. The Visual Computer, 1997.
[81]
S. Parsa. A deterministic o(m log m) time algorithm for the reeb graph. In SoCG, 2012.
[82]
V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution computation and presentation of contour trees. In IASTED, 2004.
[83]
V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas. Robust on-line computation of Reeb graphs: simplicity and speed. ACM ToG, 2007.
[84]
J. Patchett and G. R. Gisler. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2018/, 2018.
[85]
C. Petz, K. Pöthkow, and H.-C. Hege. Probabilistic local features in uncertain vector fields with spatial correlation. CGF, 2012.
[86]
T. Pfaffelmoser, M. Mihai, and R. Westermann. Visualizing the variability of gradients in uncertain 2D scalar fields. IEEE TVCG, 2013.
[87]
T. Pfaffelmoser, M. Reitinger, and R. Westermann. Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. CGF, 2011.
[88]
T. Pfaffelmoser and R. Westermann. Visualization of global correlation structures in uncertain 2D scalar fields. CGF, 2012.
[89]
K. Pothkow and H.-C. Hege. Positional uncertainty of isocontours: Condition analysis and probabilistic measures. IEEE TVCG, 2011.
[90]
K. Pöthkow and H.-C. Hege. Nonparametric models for uncertainty visualization. CGF, 2013.
[91]
K. Pöthkow, C. Petz, and H.-C. Hege. Approximate level-crossing probabilities for interactive visualization of uncertain isocontours. Int. J. Uncert. Quantif., 2013.
[92]
K. Pöthkow, B. Weber, and H.-C. Hege. Probabilistic marching cubes. In CGF, 2011.
[93]
K. Potter, S. Gerber, and E. W. Anderson. Visualization of uncertainty without a mean. IEEE Computer Graphics and Applications, 2013.
[94]
K. Potter, A. Wilson, P. Bremer, D. Williams, C. Doutriaux, V. Pascucci, and C. R. Johnson. Ensemble-vis: A framework for the statistical visualization of ensemble data. In 2009 IEEE ICDM, 2009.
[95]
J. C. Potter K, Rosen P. From quantification to visualization: A taxonomy of uncertainty visualization approaches. IFIP AICT, 2012.
[96]
V. Robins, P. J. Wood, and A. P. Sheppard. Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images. IEEE Trans. Pattern Anal. Mach. Intell., 2011.
[97]
H. Saikia, H. Seidel, and T. Weinkauf. Extended branch decomposition graphs: Structural comparison of scalar data. CGF, 2014.
[98]
J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead. Noodles: A tool for visualization of numerical weather model ensemble uncertainty. IEEE TVCG, 2010.
[99]
S. Schlegel, N. Korn, and G. Scheuermann. On the interpolation of data with normally distributed uncertainty for visualization. IEEE TVCG (IEEE VIS), 2012.
[100]
N. Shivashankar and V. Natarajan. Parallel Computation of 3D Morse-Smale Complexes. CGF, 2012.
[101]
N. Shivashankar, P. Pranav, V. Natarajan, R. van de Weygaert, E. P. Bos, and S. Rieder. Felix: A topology based framework for visual exploration of cosmic filaments. IEEE TVCG, 2016.
[102]
M. Soler, M. Plainchault, B. Conche, and J. Tierny. Lifted Wasserstein matcher for fast and robust topology tracking. In IEEE LDAV, 2018.
[103]
T. Sousbie. The persistent cosmic web and its filamentary structure: Theory and implementations. Royal Astronomical Society, 2011.
[104]
R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan. Edit distance between merge trees. IEEE TVCG, 2020.
[105]
A. Szymczak. Hierarchy of stable Morse decompositions. IEEE TVCG, 2013.
[106]
S. Tarasov and M. Vyali. Construction of contour trees in 3d in o(n log n) steps. In SoCG, 1998.
[107]
R. Taylor, A. Chourasia, D. Whalen, and M. L. Norman. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2008/, 2008.
[108]
J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The Topology ToolKit. IEEE TVCG (IEEE VIS), 2017. https://topology-tool-kit.github.io/
[109]
J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. IEEE TVCG (IEEE VIS), 2009.
[110]
K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Fréchet Means for Distributions of Persistence Diagrams. DCG, 2014.
[111]
J. Vidal, J. Budin, and J. Tierny. Progressive Wasserstein Barycenters of Persistence Diagrams. IEEE TVCG (IEEE VIS), 2019.
[112]
W. Wang, C. Bruyere, B. Kuo, and T. Scheitlin. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2004/, 2004.
[113]
R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles. IEEE TVCG, 2013.
[114]
T. Wischgoll, A. Chourasia, K. Gorges, M. Bruck, and N. Rober. The IEEE SciVis Contest. http://sciviscontest.ieeevis.org/2017/, 2017.
[115]
K. Wu and S. Zhang. A contour tree based visualization for exploring data with uncertainty. IJUQ, 2013.
[116]
L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan, I. Hotz, and B. Wang. Scalar field comparison with topological descriptors: Properties and applications for scientific visualization. CGF, 2021.
[117]
L. Yan, Y. Wang, E. Munch, E. Gasparovic, and B. Wang. Source Code for a Structural Average of Labeled Merge Trees for Uncertainty Visualization. https://github.com/tdavislab/amt, 2019.
[118]
L. Yan, Y. Wang, E. Munch, E. Gasparovic, and B. Wang. A structural average of labeled merge trees for uncertainty visualization. IEEE TVCG (IEEE VIS), 2019.
[119]
K. Zhang. A Constrained Edit Distance Between Unordered Labeled Trees. Algorithmica, 1996.

Cited By

View all
  • (2024)Fast Comparative Analysis of Merge Trees Using Locality Sensitive HashingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345638331:1(141-151)Online publication date: 12-Sep-2024
  • (2024)Wasserstein Dictionaries of Persistence DiagramsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333026230:2(1638-1651)Online publication date: 1-Feb-2024
  • (2024)A Task-Parallel Approach for Localized Topological Data StructuresIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332718230:1(1271-1281)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics  Volume 28, Issue 1
Jan. 2022
1190 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 01 January 2022

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Fast Comparative Analysis of Merge Trees Using Locality Sensitive HashingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345638331:1(141-151)Online publication date: 12-Sep-2024
  • (2024)Wasserstein Dictionaries of Persistence DiagramsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333026230:2(1638-1651)Online publication date: 1-Feb-2024
  • (2024)A Task-Parallel Approach for Localized Topological Data StructuresIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332718230:1(1271-1281)Online publication date: 1-Jan-2024
  • (2024)Merge Tree Geodesics and Barycenters with Path MappingsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332660130:1(1095-1105)Online publication date: 1-Jan-2024
  • (2024)A Comparative Study of the Perceptual Sensitivity of Topological Visualizations to Feature VariationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332659230:1(1074-1084)Online publication date: 1-Jan-2024
  • (2023)Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)IEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333475530:9(6390-6406)Online publication date: 28-Nov-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media