Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Provectories: Embedding-Based Analysis of Interaction Provenance Data

Published: 01 December 2023 Publication History

Abstract

Understanding user behavior patterns and visual analysis strategies is a long-standing challenge. Existing approaches rely largely on time-consuming manual processes such as interviews and the analysis of observational data. While it is technically possible to capture a history of user interactions and application states, it remains difficult to extract and describe analysis strategies based on interaction provenance. In this article, we propose a novel visual approach to the meta-analysis of interaction provenance. We capture single and multiple user sessions as graphs of high-dimensional application states. Our meta-analysis is based on two different types of two-dimensional embeddings of these high-dimensional states: layouts based on (i) topology and (ii) attribute similarity. We applied these visualization approaches to synthetic and real user provenance data captured in two user studies. From our visualizations, we were able to extract patterns for data types and analytical reasoning strategies.

References

[1]
Anaconda Inc. Datashader. Accurately render even the largest data, 2016. [Online]. Available: https://datashader.org/
[2]
B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic, “Time curves: Folding time to visualize patterns of temporal evolution in data,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 559–568, Jan. 2016.
[3]
T. Blascheck, F. Beck, S. Baltes, T. Ertl, and D. Weiskopf, “Visual analysis and coding of data-rich user behavior,” in Proc. IEEE Conf. Vis. Anal. Sci. Technol., 2016, pp. 141–150.
[4]
M. Brehmer and T. Munzner, “A multi-level typology of abstract visualization tasks,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2376–2385, Dec. 2013.
[5]
E. T. Brown et al., “Finding waldo: Learning about users from their Interactions,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 1663–1672, Dec. 2014.
[6]
E. T. Brown, S. Yarlagadda, K. A. Cook, A. Endert, and R. Chang, “ModelSpace: Visualizing the trails of data models in visual analytics systems,” in Proc. Mach. Learn. User Int. Vis. Anal. Workshop, 2018.
[7]
S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, “VisTrails: Visualization meets data management,” in Proc. Int. Conf. Manage. Data, 2006, pp. 745–747.
[8]
H. Chung, S. Yang, N. Massjouni, C. Andrews, R. Kanna, and C. North, “VizCept: Supporting synchronous collaboration for constructing visualizations in intelligence analysis,” in Proc. IEEE Symp. Vis. Anal. Sci. Technol., 2010, pp. 107–114.
[9]
P. Cowley, L. Nowell, and J. Scholtz, “Glass box: An instrumented infrastructure for supporting human interaction with information,” in Proc. Conf. Sys. Sci., p. 296c, 2005.
[10]
Z. T. Cutler, K. Gadhave, and A. Lex, “Trrack: A library for provenance tracking in web-based visualizations,” in Proc. IEEE Vis. Conf., 2020, pp. 116–120.
[11]
W. Dou, D. H. Jeong, F. Stukes, W. Ribarsky, H. R. Lipford, and R. Chang, “Recovering reasoning process from user interactions,” IEEE Comput. Graph. Appl., vol. 29, no. 3, pp. 52–61, May/Jun. 2009.
[12]
C. Dunne, N. Henry Riche, B. Lee, R. Metoyer, and G. Robertson, “GraphTrail: Analyzing large multivariate, heterogeneous networks while supporting exploration history,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2012, pp. 1663–1672.
[13]
K. Eckelt et al., “Visual exploration of relationships and structure in low-dimensional embeddings,” Open Sci. Framework, Apr. 2021.
[14]
M. Feng, E. Peck, and L. Harrison, “Patterns and pace: Quantifying diverse exploration behavior with visualizations on the web,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 501–511, Jan. 2019.
[15]
V. A. Fock, “Konfigurationsraum und zweite quantelung,” Zeitschrift Physik, vol. 75, no. 9–10, pp. 622–647, Sep. 1932.
[16]
K. Gadhave et al., “Predicting intent behind selections in scatterplot visualizations,” Inf. Vis., vol. 20, no. 4, pp. 207–228, Oct. 2021.
[17]
M. Gleicher, “Considerations for visualizing comparison,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 413–423, Aug. 2018.
[18]
S. Gomez and D. Laidlaw, “Modeling task performance for a crowd of users from interaction histories,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2012, pp. 2465–2468.
[19]
D. Gotz and M. X. Zhou, “Characterizing Users’ visual analytic activity for insight provenance,” Inf. Vis., vol. 8, no. 1, pp. 42–55, 2009.
[20]
J. C. Gower, “A general coefficient of similarity and some of its properties,” Biometrics, vol. 27, no. 4, pp. 857–871, 1971.
[21]
S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit, “From visual exploration to storytelling and back again,” Comput. Graph. Forum, vol. 35, no. 3, pp. 491–500, 2016.
[22]
J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical histories visualization: Supporting analysis, communication, and evaluation,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6, pp. 1189–1196, Nov./Dec. 2008.
[23]
A. Hinterreiter, C. Steinparz, M. Schöfl, H. Stitz, and M. Streit, “Projection path explorer: Exploring visual patterns in projected decision-making paths,” ACM Trans. Int. Intell. Syst., vol. 11, no. 3–4, 2021, Art. no.
[24]
J. Hollan, E. Hutchins, and D. Kirsh, “Distributed cognition: Toward a new foundation for human-computer interaction research,” ACM Trans. Comput.-Hum. Int., vol. 7, no. 2, pp. 174–196, 2000.
[25]
M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software,” PLoS One, vol. 9, no. 6, 2014, Art. no.
[26]
A. Karpathy, “tSNEJS”, 2014. [Online]. Available: https://github.com/karpathy/tsnejs/
[27]
N. Kerracher, J. Kennedy, and K. Chalmers, “A task taxonomy for temporal graph visualisation,” IEEE Trans. Vis. Comput. Graph., p. 1, 2015.
[28]
J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov, and A. C. Telea, “Graph layouts by t-SNE,” Comput. Graph. Forum, vol. 36, no. 3, pp. 283–294, 2017.
[29]
Z. Liu and J. Stasko, “Mental models, visual reasoning and interaction in information visualization: A top-down perspective,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 6, pp. 999–1008, Nov./Dec. 2010.
[30]
K. Madanagopal, E. D. Ragan, and P. Benjamin, “Analytic provenance in practice: The role of provenance in real-world visualization and data analysis environments,” IEEE Comput. Graph. Appl., vol. 39, no. 6, pp. 30–45, Nov. 2019.
[31]
W. C. Mankowski, P. Bogunovich, A. Shokoufandeh, and D. D. Salvucci, “Finding canonical behaviors in user protocols,” in Proc. Conf. Hum. Factors Comput. Syst., 2009, pp. 1323–1326.
[32]
M. Pohl and J. D. Haider, “Sense-making strategies for the interpretation of visualizations—bridging the gap between theory and empirical research,” Multimodal Technol. Int., vol. 1, no. 3, 2017, Art. no.
[33]
L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation and projection for dimension reduction,” 2018,.
[34]
P. H. Nguyen, K. Xu, A. Wheat, B. L. W. Wong, S. Attfield, and B. Fields, “SensePath: Understanding the sensemaking process through analytic provenance,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 41–50, Jan. 2016.
[35]
C. Nobre, D. Wootton, Z. Cutler, L. Harrison, H. Pfister, and A. Lex, “reVISit: Looking under the hood of interactive visualization studies,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2021, pp. 1–13.
[36]
L. G. Nonato and M. Aupetit, “Multidimensional projection for visual analytics: Linking techniques with distortions, tasks, and layout enrichment,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 8, pp. 2650–2673, Aug. 2019.
[37]
A. Pandey, U. Syeda, and M. Borkin, “Towards identification and mitigation of task-based challenges in comparative visualization studies,” in Proc. IEEE Workshop Eval. Beyond Methodological Approaches Vis., 2020, pp. 55–64.
[38]
F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
[39]
People+AI Research (PAIR) Initiative, UMAP-JS, 2019. [Online]. Available: https://github.com/PAIR-code/umap-js/
[40]
G. Plique, “Graphology ForceAtlas2, 2016. [Online]. Available: https://github.com/graphology/graphology-layout-forceatlas2
[41]
M. Pohl, M. Smuc, and E. Mayr, “The user puzzle - explaining the interaction with visual analytics systems,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2908–2916, Dec. 2012.
[42]
P. G. Poličar, M. Stražar, and B. Zupan, “openTSNE: A modular python library for t-SNE dimensionality reduction and embedding,” 2019, bioRxiv.
[43]
E. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing provenance in visualization and data analysis: An organizational framework of provenance types and purposes,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 31–40, Jan. 2016.
[44]
P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea, “Visualizing the hidden activity of artificial neural networks,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 101–110, Jan. 2017.
[45]
H. Rosling and Z. Zhang, “Health advocacy with Gapminder animated statistics,” J. Epidemiol. Glob. Health, vol. 1, no. 1, pp. 11–14, 2011.
[46]
V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang, “Eviza: A natural language interface for visual analysis,” in Proc. Symp. User Interface Softw. Technol., 2016, pp. 365–377.
[47]
H. Stitz, S. Gratzl, H. Piringer, T. Zichner, and M. Streit, “KnowledgePearls: Provenance-based visualization retrieval,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 120–130, Jan. 2019.
[48]
H. Stitz, S. Luger, M. Streit, and N. Gehlenborg, “AVOCADO: Visualization of Workflow–Derived data provenance for reproducible biomedical research,” Comput. Graph. Forum, vol. 35, no. 3, pp. 481–490, 2016.
[49]
S. van den Elzen, D. Holten, J. Blaas, and J. van Wijk, “Reducing snapshots to points: A visual analytics approach to dynamic network exploration,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 1–10, Jan. 2016.
[50]
L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.
[51]
J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma, “Visual cluster exploration of web clickstream data,” in Proc. IEEE Conf. Vis. Anal. Sci. Technol., 2012, pp. 3–12.
[52]
J. Wood, A. Kachkaev, and J. Dykes, “Design exposition with literate visualization,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 759–768, Jan. 2019.
[53]
K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wenskovitch, “Survey on the analysis of user interactions and visualization provenance,” Comput. Graph. Forum, vol. 39, no. 3, pp. 757–783, Jun. 2020.
[54]
Yang Chen, Jing Yang, and W. Ribarsky, “Toward effective insight management in visual analytics systems,” in Proc. IEEE Pacific Vis. Symp., 2009, pp. 49–56.
[55]
J. Zhao, M. Glueck, P. Isenberg, F. Chevalier, and A. Khan, “Supporting handoff in asynchronous collaborative sensemaking using knowledge-transfer graphs,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 340–350, Jan. 2018.

Index Terms

  1. Provectories: Embedding-Based Analysis of Interaction Provenance Data
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Visualization and Computer Graphics
    IEEE Transactions on Visualization and Computer Graphics  Volume 29, Issue 12
    Dec. 2023
    783 pages

    Publisher

    IEEE Educational Activities Department

    United States

    Publication History

    Published: 01 December 2023

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 02 Feb 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media