Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

MoReVis: A Visual Summary for Spatiotemporal Moving Regions

Published: 01 March 2023 Publication History
  • Get Citation Alerts
  • Abstract

    Spatial and temporal interactions are central and fundamental in many activities in our world. A common problem faced when visualizing this type of data is how to provide an overview that helps users navigate efficiently. Traditional approaches use coordinated views or 3D metaphors like the Space-time cube to tackle this problem. However, they suffer from overplotting and often lack spatial context, hindering data exploration. More recent techniques, such as <italic>MotionRugs</italic>, propose compact temporal summaries based on 1D projection. While powerful, these techniques do not support the situation for which the spatial extent of the objects and their intersections is relevant, such as the analysis of surveillance videos or tracking weather storms. In this article, we propose MoReVis, a visual overview of spatiotemporal data that considers the objects&#x2019; spatial extent and strives to show spatial interactions among these objects by displaying spatial intersections. Like previous techniques, our method involves projecting the spatial coordinates to 1D to produce compact summaries. However, our solution&#x0027;s core consists of performing a layout optimization step that sets the size and positions of the visual marks on the summary to resemble the actual values on the original space. We also provide multiple interactive mechanisms to make interpreting the results more straightforward for the user. We perform an extensive experimental evaluation and usage scenarios. Moreover, we evaluated the usefulness of MoReVis in a study with 9 participants. The results point out the effectiveness and suitability of our method in representing different datasets compared to traditional techniques.

    References

    [1]
    W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of Time-Oriented Data. Berlin, Germany: Springer, 2011.
    [2]
    M. Harrower, “The cognitive limits of animated maps,” Cartographica: Int. J. Geographic Inf. Geovisualization, vol. 42, no. 4, pp. 349–357, 2007.
    [3]
    J. Buchmüller, D. Jäckle, E. Cakmak, U. Brandes, and D. A. Keim, “MotionRugs: Visualizing collective trends in space and time,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 76–86, Jan. 2019.
    [4]
    N. Andrienko and G. Andrienko, “Visual analytics of movement: An overview of methods, tools and procedures,” Inf. Vis., vol. 12, no. 1, pp. 3–24, 2013.
    [5]
    A. Thudt, D. Baur, and S. Carpendale, “Visits: A spatiotemporal visualization of location histories,” in Proc. 15th Eurograph. Conf. Vis., M. Hlawitschka and T. Weinkauf, Eds. The Eurographics Assoc., 2013, pp. 79–83.
    [6]
    Z. Wang, H. Guo, B. Yu, and X. Yuan, “Interactive visualization of 160 years’ global hurricane trajectory data,” in Proc. IEEE Pacific Vis. Symp., Hong Kong, 2011, pp. 37–38.
    [7]
    N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, “Vector field k-means: Clustering trajectories by fitting multiple vector fields,” Comput. Graph. Forum, vol. 32, no. 3pt2, pp. 201–210, 2013.
    [8]
    Z. Wang and X. Yuan, “Urban trajectory timeline visualization,” in Proc. Int. Conf. Big Data Smart Comput., 2014, pp. 13–18.
    [9]
    M. Kraak, “The space-time cube revisited from a geovisualization perspective,” in Proc. 21st Int. Cartographic Conf., New Zealand: Int. Cartographic Assoc., 2003, pp. 1988–1996.
    [10]
    B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale, “A descriptive framework for temporal data visualizations based on generalized space-time cubes,” Comput. Graph. Forum, vol. 36, no. 6, pp. 36–61, Sep. 2017.
    [11]
    N. Andrienko, G. Andrienko, L. Barrett, M. Dostie, and P. Henzi, “Space transformation for understanding group movement,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2169–2178, Dec. 2013.
    [12]
    W. Chen, F. Guo, and F.-Y. Wang, “A survey of traffic data visualization,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 2970–2984, Dec. 2015.
    [13]
    C. Ware, Information Visualization: Perception for Design. Amsterdam, The Netherlands: Elsevier Science, 2013.
    [14]
    J. Filho, W. Stuerzlinger, and L. Nedel, “Evaluating an immersive space-time cube geovisualization for intuitive trajectory data exploration,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 01, pp. 514–524, Jan. 2020.
    [15]
    J. F. Buchmüller, U. Schlegel, E. Cakmak, D. A. Keim, and E. Dimara, “SpatialRugs: A compact visualization of space and time for analyzing collective movement data,” Comput. Graph., vol. 101, pp. 23–34, 2021.
    [16]
    M. Franke, H. Martin, S. Koch, and K. Kurzhals, “Visual analysis of spatio-temporal phenomena with 1D projections,” Comput. Graph. Forum, vol. 40, no. 3, pp. 335–347, 2021.
    [17]
    S. Ayesha, M. K. Hanif, and R. Talib, “Overview and comparative study of dimensionality reduction techniques for high dimensional data,” Inf. Fusion, vol. 59, pp. 44–58, 2020.
    [18]
    H. Lu and B. C. Ooi, “Spatial indexing: Past and future,” IEEE Data Eng. Bull., vol. 16, no. 3, pp. 16–21, Sep. 1993.
    [19]
    D. Guo and M. Gahegan, “Spatial ordering and encoding for geographic data mining and visualization,” J. Intell. Inf. Syst., vol. 27, pp. 243–266, Nov. 2006.
    [20]
    J. Wulms, J. Buchmuller, W. Meulemans, K. Verbeek, and B. Speckmann, “Stable visual summaries for trajectory collections,” in Proc. IEEE 14th Pacific Visualization Symp., Los Alamitos, CA, USA, 2021, pp. 61–70.
    [21]
    V. Peña-Araya, T. Xue, E. Pietriga, L. Amsaleg, and A. Bezerianos, “HyperStorylines: Interactively untangling dynamic hypergraphs,” Inf. Vis., vol. 21, no. 1, pp. 38–62, 2022.
    [22]
    T. C. van Dijk et al., “Block crossings in storyline visualizations,” in Proc. Int. Symp. Graph Drawing Netw. Visualization, Y. Hu and M. Nöllenburg, Eds. Cham, Switzerland: Springer, 2016, pp. 382–398.
    [23]
    Y. Tanahashi and K.-L. Ma, “Design considerations for optimizing storyline visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2679–2688, Dec. 2012.
    [24]
    S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu, “StoryFlow: Tracking the evolution of stories,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2436–2445, Dec. 2013.
    [25]
    T. Tang, S. Rubab, J. Lai, W. Cui, L. Yu, and Y. Wu, “iStoryline: Effective convergence to hand-drawn storylines,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 769–778, Jan. 2019.
    [26]
    D. Arendt and M. Pirrung, “The “y” of it matters, even for storyline visualization,” in Proc. IEEE Conf. Vis. Analytics Sci. Technol., 2017, pp. 81–91.
    [27]
    H. Li, T. Xiezhang, C. Yang, L. Deng, and P. Yi, “Secure video surveillance framework in smart city,” Sensors, vol. 21, no. 13, 2021, Art. no.
    [28]
    K. A. Joshi and D. G. Thakore, “A survey on moving object detection and tracking in video surveillance system,” Int. J. Soft Comput. Eng., vol. 2, no. 3, pp. 44–48, 2012.
    [29]
    T. D. Räty, “Survey on contemporary remote surveillance systems for public safety,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 5, pp. 493–515, Sep. 2010.
    [30]
    A. H. Meghdadi and P. Irani, “Interactive exploration of surveillance video through action shot summarization and trajectory visualization,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2119–2128, Dec. 2013.
    [31]
    T.-Y. Lee and K. Wittenburg, “Space-time slicing: Visualizing object detector performance in driving video sequences,” in Proc. IEEE Pacific Vis. Symp., 2019, pp. 318–322.
    [32]
    C. M. Fonseca and J. G. S. Paiva, “A system for visual analysis of objects behavior in surveillance videos,” in Proc. 34th SIBGRAPI Conf. Graph. Patterns Images, 2021, pp. 176–183.
    [33]
    J. Domingo-Ferrer and R. Trujillo-Rasua, “Microaggregation-and permutation-based anonymization of movement data,” Inf. Sci., vol. 208, pp. 55–80, 2012.
    [34]
    F. Bonchi, “Privacy preserving publication of moving object data,” in Privacy in Location-Based Applications. Berlin, Germany: Springer, 2009, pp. 190–215.
    [35]
    J. Cox, D. House, and M. Lindell, “Visualizing uncertainty in predicted hurricane tracks,” Int. J. Uncertainty Quantification, vol. 3, pp. 143–156, Jan. 2013.
    [36]
    Z. Li et al., “MoveMine: Mining moving object data for discovery of animal movement patterns,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 4, Jul. 2011, Art. no.
    [37]
    A. Diehl, R. Pelorosso, J. Ruiz, R. Pajarola, M. E. Gröller, and S. Bruckner, “Hornero: Thunderstorms characterization using visual analytics,” Comput. Graph. Forum, vol. 40, no. 3, pp. 299–310, 2021.
    [38]
    M. Dixon and G. Wiener, “TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology,” J. Atmospheric Ocean. Technol., vol. 10, no. 6, pp. 785–797, 1993.
    [39]
    M. Höferlin, B. Höferlin, G. Heidemann, and D. Weiskopf, “Interactive schematic summaries for faceted exploration of surveillance video,” IEEE Trans. Multimedia, vol. 15, no. 4, pp. 908–920, Jun. 2013.
    [40]
    B. Bach, E. Pietriga, and J.-D. Fekete, “Visualizing dynamic networks with matrix cubes,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., New York, NY, USA, 2014, pp. 877–886.
    [41]
    G. Smith, W. Stuerzlinger, and T. Salzman, “3D scene manipulation with 2D devices and constraints,” in Proc. Graph. Interface Conf., Ottawa, ON, Canada, 2001, pp. 135–142.
    [42]
    K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 2, no. 11, pp. 559–572, 1901.
    [43]
    J. B. Kruskal, “Multidimensional scaling by optimizng goodness of a fit to nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.
    [44]
    E. Tejada, R. Minghim, and L. G. Nonato, “On improved projection techniques to support visual exploration of multi-dimensional data sets,” Inf. Vis., vol. 2, no. 4, pp. 218–231, 2003.
    [45]
    L. der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.
    [46]
    L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: Uniform manifold approximation and projection,” J. Open Source Softw., vol. 3, no. 29, 2018, Art. no.
    [47]
    J. Lee and S. Leyffer, Mixed Integer Nonlinear Programming. Berlin, Germany: Springer, 2011.
    [48]
    A. Bäuerle, C. van Onzenoodt, S. der Kinderen, J. J. Westberg, D. Jönsson, and T. Ropinski, “Where did my lines go? Visualizing missing data in parallel coordinates,” Comput. Graph. Forum, vol. 41, no. 3, pp. 235–246, 2022.
    [49]
    P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete, “Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 1, pp. 1–13, Jan. 2021.
    [50]
    S. V. D. Elzen, D. Holten, J. Blaas, and J. J. van Wijk, “Dynamic network visualization withExtended massive sequence views,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 8, pp. 1087–1099, Aug. 2014.
    [51]
    A. Inselberg and B. Dimsdale, “Parallel coordinates: A tool for visualizing multi-dimensional geometry,” in Proc. IEEE 1st Conf. Vis., 1990, pp. 361–378.
    [52]
    T. Chavdarova et al., “WILDTRACK: A multi-camera HD dataset for dense unscripted pedestrian detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 5030–5039.
    [53]
    C. Landsea and J. Beven, “The revised atlantic hurricane database (HURDAT2).” 2021. Accessed: Nov. 17, 2021. [Online]. Available: https://www.aoml.noaa.gov/hrd/hurdat
    [54]
    S. J. Camargo, A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, “Cluster analysis of typhoon tracks. Part I: General properties,” J. Climate, vol. 20, no. 14, pp. 3635–3653, 2007.
    [55]
    P. K. Tripathi, M. Debnath, and R. Elmasri, “A direction based framework for trajectory data analysis,” in Proc. 9th ACM Int. Conf. Pervasive Technol. Related Assistive Environ., New York, NY, USA, 2016, Art. no.
    [56]
    M. Mirzargar, R. T. Whitaker, and R. M. Kirby, “Curve boxplot: Generalization of boxplot for ensembles of curves,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2654–2663, Dec. 2014.

    Index Terms

    1. MoReVis: A Visual Summary for Spatiotemporal Moving Regions
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image IEEE Transactions on Visualization and Computer Graphics
            IEEE Transactions on Visualization and Computer Graphics  Volume 30, Issue 4
            April 2024
            170 pages

            Publisher

            IEEE Educational Activities Department

            United States

            Publication History

            Published: 01 March 2023

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 12 Aug 2024

            Other Metrics

            Citations

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media