Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Dupo: A Mixed-Initiative Authoring Tool for Responsive Visualization

Published: 01 January 2024 Publication History

Abstract

Designing responsive visualizations for various screen types can be tedious as authors must manage multiple chart versions across design iterations. Automated approaches for responsive visualization must take into account the user&#x0027;s need for agency in exploring possible design ideas and applying customizations based on their own goals. We design and implement Dupo, a mixedinitiative approach to creating responsive visualizations that combines the agency afforded by a manual interface with automation provided by a recommender system. Given an initial design, users can browse automated design suggestions for a different screen type and make edits to a chosen design, thereby supporting quick prototyping and customizability. Dupo employs a two-step recommender pipeline that first suggests significant design changes (<italic>Exploration</italic>) followed by more subtle changes (<italic>Alteration</italic>). We evaluated Dupo with six expert responsive visualization authors. While creating responsive versions of a source design in Dupo, participants could reason about different design suggestions without having to manually prototype them, and thus avoid prematurely fixating on a particular design. This process led participants to create designs that they were satisfied with but which they had previously overlooked.

References

[1]
Flourish, n.d. [Online]. Available: http://flourish.studio/. 1,9.
[2]
Rollup, n.d. [Online]. Available: https://rollupjs.org/. 9.
[3]
Svelte, n.d. [Online]. Available: https://svelte.dev/. 7.
[4]
K. Andrews. Responsive visualisation. In MobileVis '18 Workshop at CHI 2018, 2018. [Online]. Available: https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf. 1.
[5]
M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Trans. Visual Comput. Graphics, 17 (12): pp. 2301–2309, 2011. 1, 9.
[6]
V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative Research in Psychology, 3 (2): pp. 77–101, 2006. 7.
[7]
K. Cook, N. Cramer, D. Israel, M. Wolverton, J. Bruce, R. Burtner, and A. Endert. Mixed-initiative visual analytics using task-driven recommendations. In Proc. IEEE VAST, pp. 9–16. IEEE, New York, 2015. 2.
[8]
W. Cui, J. Wang, H. Huang, Y. Wang, C.-Y. Lin, H. Zhang, and D. Zhang. A mixed-initiative approach to reusing infographic charts. IEEE Trans. Visual Comput. Graphics, 28 (1): pp. 173–183, 2022. 2.
[9]
Datawrapper GmbH. Datawrapper, 2013. [Online]. Available: https://www.datawrapper.de/. 1, 2, 9.
[10]
E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. Network visualization retargeting. In Proc. IISA, pp. 1–6. IEEE, New York, 2015. 1, 2.
[11]
G. Ellis and A. Dix. Enabling automatic clutter reduction in parallel coordinate plots. IEEE Trans. Visual Comput. Graphics, 12 (5): pp. 717–724, 2006. 4.
[12]
N. Elmqvist and J. Fekete. Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Trans. Visual Comput. Graphics, 16 (3): pp. 439–454, 2010. 2.
[13]
M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control: Preliminary report. 2014. [Online]. Available: https://arxiv.org/abs/1405.3694. 4, 7.
[14]
M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. Schneider. Potassco: The potsdam answer set solving collection. AI Commun., 24 (2): pp. 107–124, 2011. 2, 4, 7.
[15]
GitHub. Copilot, n.d. [Online]. Available: https://github.com/features/copilot. 9.
[16]
J. Harper and M. Agrawala. Deconstructing and restyling d3 visualizations. In Proc. UIST, pp. 253–262. ACM, New York, 2014. 9.
[17]
C. Healey, S. Kocherlakota, V. Rao, R. Mehta, and R. St. Amant. Visual perception and mixed-initiative interaction for assisted visualization design. IEEE Trans. Visual Comput. Graphics, 14 (2): pp. 396–411, 2008. 1, 2, 3.
[18]
B. Hinderman. Building Responsive Data Visualization for the Web. John Wiley & Sons, 2015. 1.
[19]
J. Hoffswell, W. Li, and Z. Liu. Techniques for flexible responsive visualization design. In Proc. CHI, pp. 1–13. ACM, New York, 2020. 1, 2, 3, 4, 5.
[20]
H. Kim, D. Mortiz, and J. Hullman. Design patterns and trade-offs in authoring communication-oriented responsive visualization. Comput. Graphics Forum (Proc. EuroVis), 40 (3): pp. 459–470, 2021. 1, 2, 3, 4, 5.
[21]
H. Kim, R. Rossi, F. Du, E. Koh, S. Guo, J. Hullman, and J. Hoffswell. Cicero: A declarative grammar for responsive visualization. In Proc. CHI, Art. No. ACM, New York, 2022. 2, 4, 7, 9.
[22]
H. Kim, R. Rossi, A. Sarma, D. Moritz, and J. Hullman. An automated approach to reasoning about task-oriented insights in responsive visualization. IEEE Trans. Visual Comput. Graphics, 28 (1): pp. 129–139, 2022. 1, 2, 3, 4.
[23]
J. L. Kolodner and L. M. Wills. Case-based creative design. Technical Report, AAAI, 1993. 2.
[24]
J. L. Kolodner and L. M. Wills. Powers of observation in creative design. Design Studies, 17 (4): pp. 385–416, 1996. 2.
[25]
C. Körner. Learning Responsive Data Visualization. Packt Publishing, 2016. 1.
[26]
J. Leclaire and A. Tabard. R3s.js–towards responsive visualizations. In Workshop on Data Exploration for Interactive Surfaces DEXIS 2015, pp. 16–19, 2015. 1.
[27]
H. Lin, D. Moritz, and J. Heer. Dziban: Balancing agency & automation in visualization design via anchored recommendations. In Proc. CHI, pp. 1–12. ACM, New York, 2020. 1, 2, 3.
[28]
J. S. Linsey, I. Tseng, K. Fu, J. Cagan, K. L. Wood, and C. Schunn. A study of design fixation, its mitigation and perception in engineering design faculty. J. Mech. Des., 132 (4): p. 041003, 2010. 1, 2.
[29]
R. Ma, H. Mei, H. Guan, W. Huang, F. Zhang, C. Xin, W. Dai, X. Wen, and W. Chen. Ladv: Deep learning assisted authoring of dashboard visualizations from images and sketches. IEEE Trans. Visual Comput. Graphics, 27 (9): pp. 3717–3732, 2021. 1, 2, 3.
[30]
Microsoft. Power bi, 2011. [Online]. Available: https://powerplatform.microsoft.com/en-us/. 2.
[31]
P. O'Donovan, A. Agarwala, and A. Hertzmann. DesignScape: Design with interactive layout suggestions. In Proc. CHI, pp. 1221–1224. ACM, New York, 2015. 1, 3.
[32]
Z. Qu and J. Hullman. Keeping multiple views consistent: Constraints, validations, and exceptions in visualization authoring. IEEE Trans. Visual Comput. Graphics, 24 (1): pp. 468–477, 2017. 2.
[33]
S. Ramírez. FastAPI, n.d. [Online]. Available: https://fastapi.tiangolo.com/. 7.
[34]
R. Rosenbaum, J. Zhi, and B. Hamann. Progressive parallel coordinates. In Proc. PacificVis, pp. 25–32. IEEE, New York, 2012. 2.
[35]
A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A grammar of interactive graphics. IEEE Trans. Visual Comput. Graphics, 23 (1): pp. 341–350, 2017. 7, 9.
[36]
A. Swearngin, C. Wang, A. Oleson, J. Fogarty, and A. J. Ko. Scout: Rapid exploration of interface layout alternatives through high-level design constraints. In Proc. CHI, pp. 1–13. ACM, New York, 2020. 1.
[37]
Tableau Software. Tableu, 2003. [Online]. Available: https://www.tableau.com/. 2.
[38]
A. Tse. ai2html, 2011. [Online]. Available: http://ai2html.org/. 1.
[39]
E. Wall, S. Das, R. Chawla, B. Kalidindi, E. T. Brown, and A. Endert. Podium: Ranking data using mixed-initiative visual analytics. IEEE Trans. Visual Comput. Graphics, 24 (1): pp. 288–297, 2018. 1, 2.
[40]
K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. Visual Comput. Graphics, 22 (1): pp. 649–658, 2016., 3.
[41]
K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual analysis with partial view specifications. In Proc. CHI, pp. 2648–2659. ACM, New York, 2017. 1, 2, 3.
[42]
A. Wu, W. Tong, T. Dwyer, B. Lee, P. Isenberg, and H. Qu. MobileVisFixer: Tailoring web visualizations for mobile phones leveraging an explainable reinforcement learning framework. IEEE Trans. Visual Comput. Graphics, 27 (2): pp. 464–474, 2021., 2.
[43]
A. Wu, L. Xie, B. Lee, Y. Wang, W. Cui, and H. Qu. Learning to automate chart layout configurations using crowdsourced paired comparison. In Proc. CHI, Art. No. ACM, New York, 2021. 2.
[44]
Y. Wu, X. Liu, S. Liu, and K. Ma. ViSizer: A visualization resizing framework. IEEE Trans. Visual Comput. Graphics, 19 (2): pp. 278–290, 2013. 1, 2.
[45]
ZingSoft. Zingchart, 2009. [Online]. Available: https://www.zingchart.com/. 2.

Index Terms

  1. Dupo: A Mixed-Initiative Authoring Tool for Responsive Visualization
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 30, Issue 1
      Jan. 2024
      1456 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 01 January 2024

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Feb 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media